大葉大	學 九十四	學年度 石	开究所碩士斯	班 招生考記	式試題紙	
系 所 別	組別	考 討 (中)	、 科 目 文名稱)	考 試日 期	節次	備註
貧訊工程	甲	離散	数学	3月27	日第二節	不可使用計算机,英乙員

註:考生可否攜帶計算機或其他資料作答,請在備註欄註明(如未註明,一律不准攜帶)

註2:作答需詳列過程及解釋原因,否則不予計分,太複雜的算式不必乘開。

- 1. (20%) Let $A = \{a, b, c, d\}, B = \{1, 2, 3, 4, 5, 6, 7\}.$
 - (a) (5%) How many functions are there from A to B?
 - (b) (5%) How many one-to-one functions are there from A to B?_
 - (c) (10%) How many <u>onto</u> functions $f: B \rightarrow A$ satisfying f(1) = a?
- 2. (10%) Let n be a positive integer and define a relation R on the set S of all nonnegative integers by aRb if and only if a and b have the same remainder when divided by n.
 - (a) (6%) Prove that R is an equivalence relation on S.
 - (b) (4%) How many different equivalence classes does R give?
- 3. (15%) Solve the recurrence relation $a_n = 6a_{n-1} 12a_{n-2} + 8a_{n-3}$ with initial conditions $a_0 = -5$, $a_1 = 4$ and $a_2 = 88$.
- 4. (15%) Let $\binom{n}{k}$ denote the number of ways to partition the set $\{1, 2, ..., n\}$ into k non-empty sets. For example, $\binom{4}{2} = 7$ since there are 7 ways to partition the set $\{1, 2, 3, 4\}$ into 2 non-empty sets: $\{1\}, \{2,3,4\}; \{2\}, \{1,3,4\}; \{3\}, \{1,2,4\}; \{4\}, \{1,2,3\}; \{1,2\}, \{3,4\}; \{1,3\}, \{2,4\}; \{1,4\}, \{2,3\}.$ Show that $\binom{n}{k} = \binom{n-1}{k-1} + k \binom{n-1}{k}$.
- 5. (15%) An edge coloring of a graph is an assignment of colors to edges so that edges incident with a common vertex are assigned different colors. The edge chromatic number of a graph is the smallest number of colors that can be used in an edge coloring of the graph. Find the edge chromatic numbers of C_n and $K_{n,n}$.
- 6. (10%) Let $n_1, n_2, ..., n_r$ be positive integers. Show that if $n_1 + n_2 + ... + n_r r + 1$ objects are placed into r boxes, then for some i, i=1, 2, ..., r, the *i*th box contains at least n_i objects.
- 7. (15%) A <u>mode</u> of a list of integers is an element that occurs at least as often as each of the other elements. Describe an algorithm that finds a mode in a list of integers.