大葉大學	退 九十四	學年度 研究所碩士班	招生考試試題紙	
系 所 別	組別	考 試 科 目 (中文名稱)	考試節次日期	備註
電機工程學系碩士班 電信工程學系碩士班	甲、乙組	電子學	3月27日第二節	

註:考生可否攜帶計算機或其他資料作答,請在備註欄註明(如未註明,一律不准攜帶)

- * 計算題答案應詳列計算步驟,否則一概不予計分。
- * 可使用計算機。

* 本試題共二頁。

P2-1

一、單選選擇題:

(27%, 每題 3%, 答錯倒扣 1%, 未答不扣分, 答案卷上須按題目順序答題, 否則不予計分)

- 1. By increasing the reverse bias voltage of a pn junction diode (before breakdown), the junction capacitance will (A) decrease (B) increase (C) increase first, then decrease (D) decrease first, then increase.
- 2. Which one of the following is true for an ideal op amp? (A) $R_{in} = 0$ and $R_{out} = 0$ (B) $R_{in} = \infty$ and $R_{out} = 0$ (C) $R_{in} = 0$ and $R_{out} = \infty$ (D) $R_{in} = \infty$ and $R_{out} = \infty$.
- 3. In the following feedback topologies, which one can increase the input resistance and increase the output resistance? (A) shunt-series (B) series-shunt (C) shunt-shunt (D) series-series.
- 4. Which one of the following is NOT an advantage of negative feedback? (A) Extend the bandwidth, (B) Reduce nonlinear distortion, (C) Desensitize the gain, (D) Increase the gain.
- 5. Which one of the following statements is NOT true? (A) The common-emitter configuration suffers from the Miller effect. (B) The cascode configuration consists of a common-source transistor followed by a common-base transistor. (C) The Class A power amplifier suffers from crossover distortion. (D) For the feedback amplifier to be stable, its pole must all be in the left half of the s plane.
- 6. The highest power conversion efficiency of a Class B power amplifier is (A) 0% (B) 25% (C) 50% (D) 78.5%.
- 7. Which one is the fastest logic circuit family? (A) NMOS (B) PMOS (C) TTL (D) ECL.
- 8. For a BJT operated at room temperature, the collector current is 1mA. Its g_m is: (A) $25m/\Omega$ (B) $40m/\Omega$ (C) 25m mV (D) 40Ω .
- 9. Which one of the following statements is NOT true? (A) Zener diodes operate in the breakdown region. (B) The Early effect will result in a decrease in the effective base width. (C) Early effect will result in decrease in the collector current. (D) The emitter follower is useful as a voltage buffer.

二、計算題:(73%)

- 1. An alternative bridge amplifier configuration with high input resistance is shown in Fig-1.
 - (a) (5%) What is the gain V_o/V_I ?
 - (b) (5%) For op amps using ± 15 V supplies that limit at ± 13 V, what is the largest sine wave you can provide across R_L ?
 - (c) (5%) Using 2 k Ω as the smallest resistor, find resistor values that make $V_o/V_I = 10 \text{ V/V}$.
- 2. The MOSFETs in the circuit of Fig-2 are matched, with $k_n'(W/L)_1 = k_p'(W/L)_2 = 100 \ \mu\text{A/V}^2$ and $|V_t| = 100 \ \mu\text{A/V}^2$
 - 2V. The resistance $R = 10M\Omega$.
 - (a) (5%) For G and D open, what are the drain currents I_{D1} and I_{D2}?
 - (b) (5%) For finite r_0 ($r_0 = |V_A| / I_D$, $|V_A| = 200V$), what is the voltage gain from G to D and the input resistance at G?
 - (c) (5%) If G is driven through a large coupling capacitor from a source V_i having a resistance of $1M\Omega$, find the voltage gain V_d/V_i .
 - (d) (5%) For what range of output signals do Q1 and Q2 remain in the pinch-off region?

大葉大	學 九十四	學年度 研究所碩士班	招生考試試題紙	
系 所 別	組別	考 試 科 目 (中文名稱)	考試節次日期	備註
電機工程學系碩士班 電信工程學系碩士班	甲、乙組	電子學	3月27日第二節	

註:考生可否攜帶計算機或其他資料作答,請在備註欄註明(如未註明,一律不准攜帶)

P2-2

- 3. (12%) For the circuit shown in Fig-3, utilize the constant-voltage drop model (0.7V) for each conducting diode and sketch the transfer characteristics V_o - V_I of the circuit.
- 4. (6%) A BJT for which $\beta_F = 100$ and $\alpha_R = 0.2$ operates with a constant base current but with the collector open. What value of V_{CEsat} would you measure?
- 5. Sketch the Bode magnitude and phase plots for the following functions:

(a)
$$T(s) = \frac{100s}{(s+100)(s+100000)}$$
 (10%)

(b)
$$T(s) = \frac{10^5 (10^5 + s)}{(10^3 + s)(10^4 + s)}$$
 (10%)

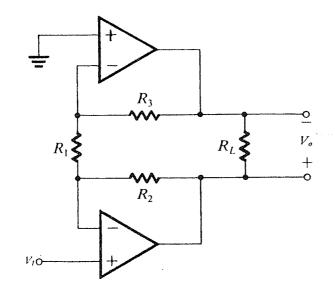


Fig-1

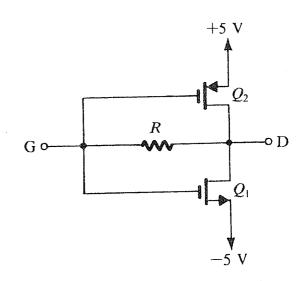


Fig-2

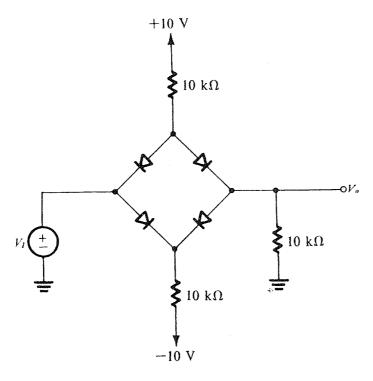


Fig-3