大葉大學 九十四 學年度 研究所碩士班 招生考試試題紙						
系 所 別	組別	考 (中	試科目 文名稱)	考試日期	節次	備註
車輛工程所	P	K PA	炒 、 才 後、	3月27日	第一節10:30~/2:00	共乙頃

註:考生可否攜帶計算機或其他資料作答,請在備註欄註明(如未註明,一律不准攜帶)

1. (24%)

Please explain the function of the following components in detail.

(a) Flywheel

(b) Piston rings

(c) Turbocharger

(d) EGR

(e) Water jacket

(f) Throttle

2. (36%)

A four-cylinder, 2.5-liter, SI automobile engine operates at WOT on a four-stroke air-standard Otto cycle at 3000 RPM. The engine has a compression ratio of 8.6:1, a mechanical efficiency of 86%, and a stroke-to-bore ratio S/B = 1.025. Fuel is isooctane with AF = 15, a heating value of 44,300 kJ/kg, and combustion efficiency $\eta_c = 100\%$. At the start of the compression stroke, conditions in the cylinder combustion chamber are 100 kPa and 60°C. It can be assumed that there is a 4% exhaust residual left over from the previous cycle.

Do a complete thermodynamic analysis of this engine.

3. (20%)

The four-cylinder engine of a light truck owned by a utility company has been converted to run on propane fuel. A dry analysis of the engine exhaust gives the following volumetric percentages:

CO₂ 4.90%

CO 9.79%

 O_2 2.45%

Calculate the equivalence ratio at which the engine is operating.

4. (20%)

As the flame front reaches the wall of a combustion chamber, reaction stops due to the closeness of the wall, which dampens out all fluid motion and conducts heat away. This unburned boundary layer can be considered a volume 0.1 mm thick along the entire combustion chamber surface. The combustion chamber consists mainly of a bowl in the face of the piston which can be approximated as a 3-cm-diameter hemisphere. Fuel is originally distributed equally throughout the chamber. Calculate the percent of fuel that does not get burned due to being trapped in the surface boundary layer.