KEAR N1 BEE WHRAETE BEEAsEK

T B ™ B =i 5 R

] 18 Bl (D ¥ 2 8) = 1 w2
A% - N ' - “ e -
Y 38 Zu i VT [s L 3F L bRAB%E —&

HAATERRHERIGTHAL HEGEMEN (L AR — R AR

FHARBORERIXF EE-BEHNRLEDLTHMA
[RHLRERET BRAESHRIBE FHARESH
x1: |

LT X BIE B 4 - A7 B AR o LRI R AR B 0 8
R T E [EHL BATEE BAPXAELSRE] - (30%)
2HAAZERXOEIE ARSI B o7 AR XA -
@%ﬁﬁﬁﬁ’wgﬁkﬁﬂﬁ%ﬁ%%ﬂé(%ﬁ%éﬁ%ﬁ’
ﬁu?xﬁgﬁﬁlwm%)'
3HREERXNETEABECHAXMELE LAXAXEHY

200-300 F £ LB HE XHE - (30%)

1. Introduction
.

In this section we first briefly review the contents of the paper, present our notation, and review the
literature on fuzzy hierarchical analysis (FHA). In Section 2 we review the computational details of finding
the weights in the analytical hierarchical process. We fuzzify hierarchical aralysis in Section 3 by allowing
fuzzy numbers for the pairwise comparisons. Direct computation of fuzzy eigenvalues and fuzzy eigenvectors
(the fuzzy weights) from a fuzzy, positive, reciprocal matrix is outlined in this section.

Section 4 contains an example having five criteria and three alternatives. In Section 4 we also discuss
consistency of fuzzy, positive, reciprocal matrices and how to obtain the final ranking based on fuzzy weights.
Section 5 gives the results in the example and Section 6 contains conclusions.

We place a “bar” over a letter to denote a fuzzy set. All our fuzzy sets will be fuzzy subsets of the real
numbers. So, é,-_,-,w,-j,l;,é,... are all fuzzy subsets of R. If 4 is a fuzzy set, then d(x) is the value of the
membership function at x€ R. An a-cut of @, written as dfo], is defined as {x|a(x)>ea} for 0<u<1. The
support of 4, written as a[0], is the closure of the union of gfu], 0<a<1. '

A triangular fuzzy number N is defined by three numbers a<b<c where the graph of y=N(x) is a
triangle with base on the interval [a,c] and vertex at x =h. We write N = (a/b/c). A triangular-shaped fuzzy

-

(165-0114/01/8 -see front matter (€ 2001 Elsevier Science B.V. All rights reserved.
PIl: S0165-0114(99)00155-4

182

number M is specified by its a-cuts M[o] = [m;(2), my(e)] where 1y(o) Sma(en), ma(o2) 2 may(ay) for all
0<op <oy <1. The actual triangular-shaped fuzzy number M is then defined by

M= U oM). ¢y

B2 9]

A trapezoidal fuzzy number N is defined by four numbers a <b<c<d where the graph of y=N(x) is a
trapezoid with base on the interval [a,d] and N (x)=1 for b<x<c. A trapezoidal-shaped fuzzy number M
is specified by its a-cuts M[«], just like a triangular-shaped fuzzy numter, except that m;(1) <my(1).

All our fuzzy numbers will be triangular (trapezoidal) fuzzy numlers, their reciprocals, or triangular
(trapezoidal)-shaped fuzzy numbers. Also, all our fuzzy sets will be strictly positive which means that 4;(0)>0
where A[a] = [a;(a), ax(«)].

In FHA, one uses fuzzy numbers for the pairwise comparisons and th: main problem is to compute the
corresponding fuzzy weights. The direct approach, of finding fuzzy eigenvalues and fuzzy eigenvectors, was
considered too- computationally difficult [2—-5] except for [6,10] to be discussed below, so researchers fuzzified
another method. However, all of these methods, except [6,10] and this paper, deviate from the original
procedure used by Saaty in HA for finding the weights.

In [15], the authors by using the results in [16] on log least squares extended HA to FHA. They used
logarithmic regression to estimate the fuzzy weights (see also [17]). In ther model they can have multiple
estimates for each pairwise comparison and they can handle the problem of missing data (no estimates for
certain comparisons). However, as pointed out in an example in [13], the logaithmic least-squares method can
produce different weights, compared to Saaty’s original procedure, for crisp iata. In [1], the authors pointed
out an error in [15] and they showed how to correct the procedure. However, in [11], it is shown that this
method can produce fuzzy weights W = (w;/w,/w3), triangular fuzzy numbers, with w3 <w;. That is, it is not
a fuzzy number. This paper was followed by [12] where the authors define the concept of strong transitivity of
a fuzzy, positive, reciprocal matrix (Section 3) and show that if this condition & satisfied, the log least-squares
method of [15] produces triangular fuzzy weights with w; <ws.

The logarithmic least-squares method of obtaining fuzzy weights has been carried on in other papers. In
[14], the author presents another solution to the problem using a generalized pseudo-inverse approach but
also points out that you can get w3 <w;. The paper [21] uses “step-form” fuzzy numbers in logarithmic
least squares to estimate these fuzzy weights, but they use a different objectivs function to be minimized in
logarithmic regression.

There are also other papers in FHA using different procedures to compute fuzzy weights. In [20], they
employed “step-form” fuzzy numbers and fuzzified another procedure, which they claim is the same as Saaty’s
original method for crisp perfectly consistent, positive, reciprocal matrices, tc calculate the fuzzy weights.
However, the matrices are usually not perfectly consistent only “reasonably” consistent, so this procedure will
produce different weights compared to Saaty’s original method, for crisp data. The paper [18] uses fuzzy
relational equations to model the FHA problem. The modeling in [18] gives a fuzzy hierarchical process quite
different from Saaty’s original HA. The author in [25] developed a method for the interactive analysis of
fuzzy pairwise comparisons in hierarchical weighting models which appears, in our opinion, far removed from
Saaty’s original HA.

The series of papers [7-9,19] are also related to FHA. In [8,9,19], they changed a fuzzy, positive, reciprocal
matrix into a crisp matrix, using «-cuts and convex combinations, and then computed the eigenvector (weight
vector) from the crisp matrix. They do not obtain a fuzzy weight vector. Paper [7] is about speeding up the
calculations in [19]. In our opinion, these papers are not about FHA since thers are no fuzzy weights.

Paper [10] is in the spirit of Saaty’s original HA. They first discuss a way of finding Ap. (Section 2),
where Amax is the largest, positive eigenvalue of a fuzzy, positive, reciprocal matrix. However, where they run
into computational problems is in computing of the fuzzy eigenvector associated With Apgy.

L. 183

In [2,5] the author also presents a method of computing the fuzzy weights in FHA. He used the fuzzification
of the geometric mean of each row. If the positive, reciprocal matrix is perfectly consistent, then the geometric
row mean procedure gives the same weights as the eigenvector method, which was Saaty’s original method.
However, we do not expect perfect consistency, so the geometric Tow procedure can give different weights
compared to the eigenvector method.

In [6], the authors did not directly find a fuzzy A, and its corresponding fuzzy eigenvector, but instead
fuzzified an equivalent procedure for finding the fuzzy weights. They tested their method on the 3 x 3 and 4 x 4
cases, where formulas exist for the fuzzy weights, to show that their procedure finds the correct fuzzy weights.

This paper directly fuzzifies Saaty’s Ams method of computing the weights and hence gives an alternative
method to that in [6]. In fact, we use the same example as in [6] to compare the two approaches.

2. Hierarchical analysis

In this section, we review the basic computations needed to find the weights in hierarchical analysis (HA).
In HA, a person (expert, judge) is asked to give ratios a;; for each pairwise comparison between issues
(alternatives, candidates) 4,...,4, for each criterion (objective) in a hierarchy, and also between the criteria.
For some specific criterion C if a person considers 4; more important than As then a;s might equal 3/1, or
5/1, or 7/1. The numbers for the ratios will be taken from the set S={1,2,3,...,9} so a;s could be s;/ss
with 51,85 €S and s, >s55. The ratios a;; " mdlcate for this expert, the strength w1th which 4; dominates 4;. If
ajs =5/1 then as; = 1/5. That is, a; —(a,,) >all i, 7, with a; =1, 1<i<n. Let 4 be the n x n matrix whose
entries are the ratios (a; =(a;)7'). 4 is called a positive reciprocal matrix. Since A4 is for criterion C; we
will now write 4; for this matrix. ‘ :

Assume that there are X criteria Cy,...,Cx with a positive reciprocal matrix 4; for each Cr, 1<k<K.
Also, the judge must give pairwise comparisons of the criteria producing a positive reciprocal matrix E. This
hierarchical structure is shown in Fig. 1. Examples with actual fuzzy numbers in the 4 and E, are presented
in Section 4.

Next, one computes weights w} = (wiy, ..., Wy) for each 4 and T =(ey,...,ex) for E. Given any positive
reciprocal matrix 4, let the eigenvalues, counting a root of multiplicity m m-times, be Ay,...,4,. There is a
dominant (real, positive) eigenvalue, let us call it Ay, 50 that || <Amax for all 4 # Amax. Also, Amax is @
root of multiplicity one. Corresponding to Amax there is a unique eigenvector wT = (wy,..., w,) so that

where w; >0 for all ; and)| w; = 1. This positive, normalized (sum one), vector w gives the weights for
4 [22-24]. Then w; is the positive, normalized eigenvector corresponding t0 Amay for 4z, 1<k <K, and e is
the eigenvector for E.

Ovemll Objectlve

7 T

Criterion Criterion Criterion
lof Cy Cx
ArAz. . . 4, Ay As. . An Ajdz.. A,

Alternatives Alternatives Alternatives

Fig. 1. Hierarchical structure.

184 o _

The objective of HA is to rank the alternatives across all the criteria. Then, assuming that the reciprocal
matrices 4y, 1<k<K, and E are reasonably consistent [22—24], the final ranking of the alternatives is
determined by the vector T =(ry,...,7,) where

K
Fj= ijkek, (3)
k=1

1<j<n. We will discuss consistency for fuzzy hierarchical analysis in Section 4. The weight for alternative
4; is r;, 1 <j<n. The alternatives are ranked according to the numbers #;, 1<j <n. The hierarchical structure
(Fig. 1) can be expanded to more levels, but we shall consider, in this paper, only the three levels shown
in Fig. 1.

3. Fuzzy hierarchical analysis

The experts are allowed to use fuzzy ratios in place of exact ratios. The @j, i#J, can now be fuzzy
numbers in any positive reciprocal matrix. As before, @; =1 for all ;. We will start using only triangular
fuzzy numbers, or their reciprocals, for the 4, i#j. Then we show how our procedure easily extends to
trapezoidal fuzzy numbers and their reciprocals.

The types of fuzzy numbers that can be used in paired comparisons are described by &;=/(a/B/y)
where o, 8,7 €S, a<f<y. If G;=(/B/y) then @y =(G;)~' =(y~!/p~/a~'). However, d;' is not exactly a
triangular fuzzy number, if d;; is a triangular fuzzy number, but we will use the same notation (y~!/8~1/a~1)
for a; !

We will need the a-cuts of all the Gy, i#j. If Gy =(o/B/y), then set d;[o]=/[ay(«),a;n(x)] and then
@' (o] =[5, (a), @) (). :

Now, we assume that the elements in the fuzzy positive reciprocal matrices 4, and £ are ai = (a/B/v),
@Gi=1,d;=a;".

We now describe how we are going to compute the fuzzy weight vectors w; and €. There are a number
of other issues to be addressed in FHA, like consistency, and how do we obtain the final ranking because
now the weight r; (Eq. (3)) for alternative 4; will be a fuzzy number. These two issues will be considered
in Section 4. Right now, we are only concerned with finding the fuzzy weight vector for a fuzzy, positive,
reciprocal matrix.

Let 4 be an nxn fuzzy, positive, reciprocal matrix with elements ;. Let a;[a] = [ai(«), aju(2)]. If
i=j, then a; () =ap(0)=1.1f a; = c'i,-;l, then ajy(x) = di;ul(a), ajiy(e) = 51._.11(05). Define n x n matrices 4, =
[aiji(2)], Aou = [aiju(a)], all o in [0, 1]. For all i # j there is a unique Xijm 80 that @;;(x;jm) = 1. Define 4, = [xym]
where x;i, =1 for all i. Note that 4, and A, are positive matrices but they are no longer reciprocal matrices.

Now each 4, >0, Ay, >0, and 4, >0 so each matrix has a positive, dominant eigenvalue [22,24], called
Amax. Let Ay = Amax Tor Aoy, Ay = Amax for Ay, and Ay = Amax for 4,. We know that [22,24]

2ot < hat < A < Doy < Aow 4)

for 0<x<1. Let Apsy the triangular-shaped fuzzy number specified by the a-cuts [Ay, Ay,]. Note that Apa(x)
=1forx=2, '
Let wy, be an n x 1 unique, positive, normalized (sum is one) eigenvector corresponding to A, [22,24].
Then AWy = AWy and if W = Wiy, ..., Wan), then wi, >0, Wy + -+ + Wy = 1.

185

yﬂ
w‘ﬂl a”™ 0.8
N 1
Wos, all wogy
1 Kogt
Wo.si
=0.6
./w (@=D @
W:s,z,l = Wy v 0.6,
W,
a— 0.6/
Wofs,z,l <] _ : - x+y=1

f ”m 1 =X
* * W

Wo 8,17 = Wos,11 Wos,

Fig. 2. Selecting w}, when n =2.

Now let wyi(wy,) be an nx 1 unique, positive, normalized (sum is one) eigenvector corresponding to
At(Agu). We will show how to find constants K, K,, so that:
(1) 0<Ku<1, 1<Ky; and (2) Ky, Ky, depend only on &, 0<ao< 1. Then we will define

W;.' :Kalw.‘xls (5)

W;u =KyuWou (6)
for 0a<1. Let (W) =W - sWE)y (W) = (Wit s Wi)s Wi = Wttty -, Went) and W, = (Waty, .-,
Woanu)-

We next show that if 0o, <oy <1, then O<w}, ; Swy ;; <wip <Waqm <Wj,,, forall i=1,...,n. This means
that the a-cuts [wY,, w,] specify a triangular-shaped fuzzy numberw}, 1<i<n. Set (#*)" —(w;‘, ...,W3). The
fuzzy weights will be the w}, 1<i<n.

Finally, we argue that
A = A, (7

using a-cuts and interval arithmetic.

We also choose the Ky, Ky, to minimize the “fuzziness” of the w;. By the “fuzziness” we mean the lengths
of the a-cuts. We wish to minimize the fuzziness so that we can “spread out” the alternatives for the final
ranking. By “spreading out” the alternatives we mean that the set H;, in Section 4.2, will have few members.

Our method may be easily explained geometrically in Figs. 2 and 3 for the n = 2 case. The reader may
then immediately generalize to n>3. Fig. 2 is for selecting K,;. The eigenvectors wy, and w,; are non-negative
and normalized, so they will lie on the line x + y = 1. The line « = 0.8, labeled as “all wyg ;”, represents
all positive eigenvectors corresponding to Ay ;. So we must select wye, on this line. But we also want
Wos.1,1 SWim and wgg , , Swyy,. Therefore, we must choose wgg , along the line segment from (0,0) to the -
point labeled Wos I,Kog[on the line o = 0.8 in Fig. 2. To minimize fuzziness we choose w08 ; to be the
point labeled as Wols’l,Ko_g,[and this determines the number Kyg ;. As a result, we see that Wo.s,1,1 <wi, but

186 T e e ey

y
w,ﬂu A o~ 0.8
all w0.8,ll
*
Wo.su
0.8,u
o ! \ =06
Wogau™ 0.6,2,u all Wo_5,,,
Wn (a = 1) *
Wom Wo.6,u
KO.G,M
xty=l
Y ” >x
_ ‘I 0.6, Wi
Wos 1™ " -

Fig. 3. Selecting w}, when n = 2,

Wos,2; Will be equal to wy,. Next, we need to choose Wge,; along the line labeled as “all wos;” in Fig. 2.
Since we require Woe 1, ,Swog 1,7 and wge , ; Swig ,; We see that to reduce fuzziness we must choose wi ;
at the point labeled as Woe I,Kos ! which then determines Kos,1-

Fig. 3 is for finding the constants Ky We will pick wj s, along the line «=0.8 but we must have
Wim SWig 1, and Wom SWig, . So, for minimum fuzziness choose Wos,, @t the point labeled as w08 w
Kos,,” and we get Wos 1,4 =Wim but wz,,,<w08 2, Similarly, define Kog,, so that Kog,wosu=Wye, 1S at
point “wy, 6, Ko~ In F1g 3 and now Wos Lu >Wos Lw wp, 6,2,u —w0 82,4 Let us return to the general method
for any n>=2.

Actually, the process will be iterative. Choose o; in [0,1] so that O=a,<a,_; < - <oy < 1. We first find
the wy ; and wj;,, 1<i<n. Then, using these results we determine the w} ;, Wi, 1<i<n. We work our
way down to finally obtain wg;, w3, 1<i<n. So, let us only go through «; and «,. Define

Ka,1=min{ d 1<i<n}, (®)
Way il
wlm .
Kalu-—max{ 1<z<n}. 9
qu i
Then surely
aul <Wlm <quxw (10)

for all i. In fact, we used the largest possible K,; and the smallest possible K,, to minimize the fuzziness.
Next, define

wk

K¢2,=mm{ﬂ 1<i<n}, (11)
wdzil ' :
wr .

Kopu= max{—M 1<i<n} (12)
Wayiu ‘

187

and we get

* * * *
0 <wozzil Swcqil <Wim <Waq iu <Woc;iur (13)

for all ;.

All we need to show is that 4w* = A w*. We will use a-cuts and interval arithmetic. Since everything is
positive all we need from interval arithmetic is that [a,b][c,d] = [ac,bd]. Let Ay = |[a;(@), aiju(®)]}, Amax(®)
= [/10&1: lau], and (M_]t(a))’r = ([W;lb w:lu]: LERE] [M_}:nb 1'-"‘]::mu])

Then 4,w* () = Amax(2)w* () is equivalent to

AWy = Auwy, (14)

AWy = AW, (15)

ou?

which is true since w}; (w},) is a constant K, (K,,) times wy; (W,). That is, we know that 4ywy = Agwy
and Ay Wou = AguWan.

Now, we will briefly explain how the above method may be extended to cover trapezoidal fuzzy numbers
and their reciprocals for the &, i # j.

Aisannxn fuzzy, positive, reciprocal matrix with elements &; = (a/,7/6) for o, B,7,6 €S, a<f<y<.
We assume that for some i # j we have §<y. Then a;' =(67/y~, ~!/er™") and @; =1 for all i. As before,
define 4,; and 4,, and A, Ay, are their corresponding dominant, positive eigenvalues. lmx is the trapezoidal-
shaped fuzzy number defined by the a-cuts [Ay, Aw]. As before wyy (wy,) are the unique, positive, normalized
(sum is one) eigenvectors corresponding to Ay (Agy)-

Define xym = (8 + 1)/2 if @y =(2/f,1/8), xym=(y~" + B~")/2 when @y=(5"'/y~", p~"/a""), and xim =1
for all i. Define an nx7 X =[x;,]. Let 4, be the dominant, positive eigenvalue of X and w,, its corresponding
positive, normalized eigenvector.

Choose the o; in [0,1] with 0 =0, <oty—; < --+ <a; = 1. As before, we first find the w};, and w{,, 1<i<n.
Using these values we determine wy ,, wy ,,, 1<i<n. Eventually, we work our way down to wg,, ey, 1 <i
<n. These values determine the trapezoidal-shaped fuzzy numbers W}, 1<i<n, 50.that AW" = Ayax ™.

Let us now only show how to get the wy, and wy,,, 1 <i<n. We find constants Ky;, Ky, so that

wiy =Kywy, (16)
Wru =K1uw1u. (17)
These constants are
- Wim L.
K”-——mm{— 1<z<n}, (18)
Wi
Wim , ' . :
Klu=max{ 1<z<n}. (19)
Wiiu

Finally, we need to explain what to do if a = f<p <4, or &= =7y <, efc., in the trapezoidal fuzzy numbers
because this will occur in the application in the next section (see [6]). We follow the same procedure as
that outlined above to get the fuzzy weights since all that is needed are the o-cuts of the &; in 4. All
that is required is for 0 <a;;i(on) <ay{oy) <1 and 1< ay(0n) <aju(on) if 0<ay <x; <1. The types of fuzzy
numbers we are discussing are shown in Fig. 4 with their reciprocals in Fig. 5.

Finally, we need to consider the question of whether or not our method of calculating the fuzzy weights for
fuzzy, positive, reciprocal matrices is independent of the set of a’s used in the «-cuts. The question is: if we
use oy =009, a4, =0.8, 43 =0.7,...,09=0.1 and a9 =0 and someone else uses o; =0.8, 0 =0.6,...,05=0,

188

1 14 1 1

T T T T 1 T T T T T i T 1 o

pa P ¥ 5 a B=y 5 51 g pt gt 51 pgleyt o
0 @) ®
1 J | |
!

' a=p }'/ 5 tlz ,é }'—"-5 3 1 ﬁ.l=a71 5=y ﬂ'l ol
® @ 3) 4)
1 1 r K E

! i 1 |
| |
. _— . |
a=f y=8 a=f=y 5 5=y f=a’ 37 7’=ﬂ"’=ar"
® ©)) ®
1 {' 1 ,
— % L .
a B=y=§ . 5= 7',-1 =ﬂ-l -
))]

Fig. 4. Fuzzy number in FHA: (1) trapezoidal; (2) triangle; Fig. 5. Reciprocals of fuzzy numbers in Fig. 4: (1) reciprocal
(3) more than « to 1; (4) less than & to 1; (5) between «/1 and of Fig. 4(1); (2) reciprocal of Fig. 4(2); (3) reciprocal of Fig.
y/1; (6) at least /1; and (7) at most §/1. 4(3); (4) reciprocal of Fig. 4(4); (5) reciprocal of Fig. 4(5);

(6) reciprecal of Fig. 4(6); and (7) reciprocal of Fig. 4(7).

are the a-cuts of the fuzzy weights the same for «=0.8, 0.6, 0.4 and 0.2? We will now present a sufficient
‘condition for this to be true.

For simplicity, let n=3. Let us consider 0<<a, <oy <1 and first get the fuzzv weights for both &; and «y.
Then we will calculate the fuzzy weights for ouly «,. For example, a; could be 0.9 and o =0.8. We give
a sufficient condition so that the a-cuts of the fuzzy weights are the same for o =u, using both procedures.
Also, let us only look at the left end points of the a-cuts. From Eq. (8) we get Ky from

mm{ Wim Wom Wiy } (20)

> b
W1l Wa2l W3l

and assume that the minimum is taken on in the second position. That is, K,,; 18 Wapu/Wy,2;. Then we compute
Wait = KoytWayi1, 1 i<3. Next, we find X,,; from

C(wr s owE L wr
mln{ alll’ 0&121, d]31 . (21)
wt’lz 17 w(lzzl Wozz?:l

Then Wy = KeyiWepir, 1=1,2,3.

189

A

Now we find w;*z ; directly from w,,. First, let I?azl be

. w W, W
]I]l[l{ 1m , 2m , 3m } . . (22)
w:xz 17 wdzzl Woz231 .

It follows that W), ; = K,, /Wi, 1 <i<3, by this method. Will Won =We, 1<i<3?
A sufficient condition for W} ;; =w},1<i<3, is for the minimum in Eq. (21) to be also in the second
position, as in Eq. (20).
So assume that X,,; =Wy 21/Way2i- We now show that it follows that the minimum in Eq. (22) must also
~be in the second position and then W), =w} ;, 1<i<3.
From the minimum in Eq. (20) we have

Wom Wim .
Kyp= 2 Yim i (23)
Wa121 Waqil

or
Wan ST k). | (24)
wd]il
Next, from the minimum in Eq. (21) we see that
wh wk.
Kpy=-22g 2l jyy (25)
W2l Wayil
or, after substituting w;”.l =Ky Wair, 1 <i<3, and substituting for X,,;, we obtain
Wan < WomWa,il ’ i;é 2 : (26)
Wa121 Wa121W(Z2iI
Now substitute the inequality from Eq. (24) for ws, on the right-hand side of Eq. (26) and we have
Wom Wim

S, Q42 | (27)
Woczzl wdgil .

or the minimum in Eq. (22) is also in the second position. :

Now we can show that Wit =W:2,-,, 1<i<3. Start with Wi = KuyWayit, 1 <I<3, substitute Koyi =Wy 5/
Way2ls Wy 01 =Koy Way21, Koy1 = Wom/Wey21 and we obtain (Wap/Weya1)W,y Which is Wi _

Note that this means that w} ,; =w} ,; =Wy, Let us generalize for n3>3 and a-cuts for 1 >0y > 0> -+ - >a,
=0. The sufficient condition implies that the minimum always occurs in the same position, say the fourth
position, for a certain fuzzy, positive, reciprocal matrix, which means that Woal =Waya1 = = ° =Wy 41 = Wam.
The sufficient condition also implies that our method is independent of the set of «’s used in the a-cuts. Of
course, we would also have a sufficient condition for the right end points of the a-cuts of the fuzzy weights.
The sufficient condition for the right end points means that their minimum always occurs in the same position,
say the sixth position, so that w5, =W}, = - - =Wy 64 = Wem.

Note that when we obtain equality with w;,, the sufficient conditions holds and the method is independent of
the set of o’s used in the a-cuts. That is, if W}, =w}, = - = w2l = Wam, then the minimum was always
in the second position.

In the application in the next section this is exactly what happens. That is, for each fuzzy, positive, reciprocal
matrix there is an i so that w}; =w;, for all o and there is a j so that Wy = Wjm for all «. In all the examples
we have used for finding the fuzzy weights the sufficient condition holds.

We have no general proof at this time so we conjecture that for fuzzy, positive, reciprocal matrices the
sufficient condition holds and our method is independent of the set of «’s used in the a-cuts. This is a topic
for future research.

190
4. Application

This application has been developed from an example in {22,23,6]. A recent graduate has been offered three
jobs Ai,43,43. In order to rank these jobs, he evaluates each job with respect to five criteria:

(1) Cy=pay; (2) C,=Dbenefits; (3) C;=location; (4) C4=colleagues (fellow workers); and (5) Cs=
potential for advancement. Using FHA, he constructs the following fuzzy reciprocal matrices:

1 (3/3,5/5)7! 1/2
A= | (3/3,5/5) 1 (2/3,3/4)
2 (2/3,3/4)7! 1
for C; =pay,
1 (2/3,3/4)71 (2/3,3/4)7}
Ay = [(2/3,3/4) 1 1
| (2/3,3/4) 1 1
for C, = benefits,
I 1 1 (7/7,8/10)
Ay = 1 1 (7/8,9/10)
| (7/7,8/10)71 (7/8,9/10)7! 1

for C; =location,

As=| (1/3,3/3) 1 (6/7,7/8)
[(2/2,2/5)™" (6/7,7/8)" 1

1 (1/3,3/3)71 (272, 2/5)]

for C4 = colleagues,

3 1 (4/4,4/6)~1 (3/4,5/5)7'
As= | (4/4,4/6) 1 1
(3/4,5/5) 1 1
for Cs = potential for advancement, and _
P B L Co Av
P 1 (1/2,2/3) (3/3,5/5)7" 1 (4/4,6/6)™"!
i B | 2237 1 : (1/2,4/5)™" §
T L | (3/3,5/5) 6 1 3 1
j’o 1 (1/2,4/5) L 1 L
U\ (4/4,6/6) 8 1 4 1

for the criteria, where P =pay, B =benefits, L =location, Co = colleagues, and 4v =advancement. In the 4;
matrices: (1) the -first row/column corresponds to alternative 4;; (2) the second row/column is 4,; and
(3) the third row/column is for job A3;. Using our algorithm we compute the fuzzy weight vectors w; for
Ar, 1<k<5, and & for E. Then from Eq. (3) we get

5
Fi= Y Wily (28)
k=1

D)

191

for all j. The fuzzy weight for job 4; is 7;. However, before showing the results we need to discuss consistency
and the ranking of fuzzy numbers.

4.1. Consistency

Let 4 be a positive, reciprocal matrix. 4 is said to be consistent when aiay; = ay; for all 4, j, k. This means
that if the judge states that az =2/1 for 4; versus 4 and gives ar; =3/1 for Ay versus 4;, then to be logically
consistent this judge should state 6/1 for 4; versus 4 ;. If A is consistent then Amax =7 and in general, Ay 2.
So a measure of consistency is built around the difference (Amax — 1) (see [22,24]). We would say that 4 is
“reasonably” consistent when (Amax — 7) is not too large (may be Apn —n<1).

To talk about consistency for fuzzy, positive, reciprocal matrices we first need to define what is meant by
M=N, M>N, and M ~N, for two fuzzy numbers M and N. Define (see [2,5])

v(M ZN)= sup(min M(x),N(»)).

xzy

We then write M >N if o(M >N)=1 and (N >M)<8 where 6 is some fixed positive fraction less than
one. Let us use §=0.8 in this paper. Next, we write M ~N when M is not greater than N and N is not
greater than M. Or, if

min(o(M 2= N), (N >M)) =6,

then M ~ N. Finally, we say that M >N if M >N or M ~N.
A fuzzy, positive, reciprocal matrix 4 =[] is defined to be consistent when

d,‘k . dkj ~ a',-j
for all 4, j,k. The following theorem was proven in [2].

Theorem 1. Let A= [3ij] be a fuzzy, positive, reczpiocal matrix. with a;; = (o;/ By, vi/6y). Choose a;; €
[Bi, vij] and form A ={ay]. If A is consistent, then A is consistent.

We shall not demand all 4; and £ to be perfectly consistent. All we shall ask is that they be “reasonably”
consistent. What this means is that each has an 4, constructed as in Theorem 1, which is reasonably consistent.

If we look at the 4;, 1<i<5, and £ in the application, all are “reasonably” consistent. In fact, Az, As,
and As are consistent. Let us look at 4; to see how it is “reasonably” consistent. From Theorem 1, for 4; to
be consistent we need [ﬁ,],y,,] C [Bik, ¥ir)-[Bij» v4j), for all 4,7, k. Consider i=1, k=2 and j=3. -

We see that [fi3,713]=1/2, [Br2,7121=[1/5,1/3] and [B23,723]=3 and 1/2¢[3/5,1]. But since 1/2 is
“reasonably” close to 3/5 we conclude that g, - @3 is “reasonably” close to d;3. In 4; we find that gy - a;
is “reasonably” close to d; for all i,j,k and we conclude that 4; is “reasonably” consistent. We have no
test for reasonable consistency for fuzzy, positive, reciprocal matrices as is used for crisp, positive, reciprocal
matrices.

4.2. Ranking fuzzy numbers

We end up (Eq. (28)) with fuzzy numbers 7,...,7 which need to be ranked so that we may obtain the
final ranking of alternatives. Let H; be all the undominated fuzzy numbers 7;. We say that 7; is undominated
if no 7;>7;, j #1i. Next, define H, to be all the undominated 7 after deleting all the fuzzy numbers in H;.
Similarly, we construct Hj, ..., Hy. Then, all the 4; corresponding to an 7; in H; have the highest ranking, all
the 4; having 7; in H, have the second ranking, etc. Properties of this ranking method are given in [2,5].

[

192 . L : ’ i

18])

Fig. 6. Fuzzy weights of 4; and £: (1) Fuzzy weights of pay; (2) Fuzzy weights of benefits; (3) Fuzzy weights of location; (4) Fuzzy ‘
weights of colleagues; (5) Fuzzy weights of advancement; (6) Fuzzy weights of criteria.

[>

Table |

Comparison of the calculated fuzzy weights between the Lambda-Max method and Ref. [6]

193

Lambda-Max method

o =1

Method in Ref. [6]

=0

a=1

[0.1253,0.1529]
[0.5805, 0.6639]
[0.2371,0.2371]

[0.1429,0.1429]
[0.4286, 0.4286]
[0.4286, 0.4286]

[0.4611,0.4613]
[0.4808, 0.4808]
[0.0578,0.0603]

[0.2158,0.2158]
[0.6817,0.6817]
{0.1025,0.1025]

[0.1022,0.1097]
[0.4388, 0.4388]
[0.4388, 0.4744]

[0.0901, 0.0971]
[0.0478,0.0485]
[0.3415,0.3458)
[0.1067,0.1151]
[0:4030, 0.4030]

[0.2398,0.2504]
[0.4865, 0.5068]
[0.2493,0.2677]

[0.1158,0.1630]
[0.5401,0.6849]
[0.1990,0.2967]

[0.1111,0.1996]
[0.3776,0.4754]
[0.3776,0.4753)

[0.4443,0.4999]
[0.4442, 0.4999]
[0.0476, 0.0666]

[0.2101, 0.4406]
[0.4723,0.6945]
[0.0653,0.1184]

[0.0834,0.1255]
[0.4332,0.5000}
[0.3977,0.4666]

[0.0720,0.1158]
{0.0371,0.0695]
[0.3183,0.3670]
[0.0872,0.1328]
[0.3816,0.4276]

[0.2040,0.3284]
[0.4008,0.6018]
[0.2009,0.3071]

[0.1219,0.1549]
[0.5973, 0.6486]
[0.2296, 0.2478]

[0.1429, 0.1429]
[0.4286,0.4286]
[0.4286, 0.4286)

[0.4509, 0.4706)
[0.4706, 0.4902]
[0.0556, 0.0625]

[0.2158,02158]
[0.6818, 0.6818]
[0.1024,0.1024]

[0.1002,0.1111]
[0.4332, 0.4444)
[0.4444, 0.4660)

[0.0836,0.1050]
[0.0430, 0.0525]
[0.3231,0.3661}
[0.0994,0.1215]
[0.3850, 0.4245] -

[0.2220,0.2694]
[0.4550,0.5416]
[0.2369,0.2817]

o=20
(1) Fuzzy weights for 4y (pay)
W [0.1253,0.1529]
Wi [0.4910,0.7395)
Wy [0.2230,0.2705}]
(2) Fuzzy weights for A (benefit).
W, [0.1324,0.1673]
e [0.4286,0.4286]
Wt [0.4286,0.4286]
(3) Fuzzy weights for A3 (location)
W [0.4611,0.4808]
W5, [0.4611,0.4808]
W, [0.0517,0.0607]
{4) Fuzzy weights for A4 (colleagues)
W [0.2158, 0.4020]
Wy [04674,0.6817]
W, [0.0728,0.1049]
(5) Fuzzy weights for As (advancement)
Wl [0.0889,0.1213]
W [0.4388,0.5105]
Wi [0.4063,0.4744]
(6) Fuzzy weights for E (criteria)
13 [0.0790, 0.1090]
&, [0.0438,0.0686)
€3 [0.3415,0.3458]
24 [0.0966,0.1316)
és [0.4002, 0.4079]
(7) Final fuzzy weights
71 [0.2296,0.2968]
72 [0.4357,0.5743]
73 [0.2236,0.2872]
5. Results

Using our algorithm, we first found the fuzzy weight vectors Wi for 4; (Figs. 6(1)(5)), 1<k<5, and
¢ for £ (Fig. 6(6)). All fuzzy numbers were calculated for a-cuts of a=0,02,0.4,0.6,0.8,1.0. Instead of
displaying all this data we show, in the following Table 1, only =0 and «=1. In Table 1, we also show
the fuzzy weight vectors for the same two a-cuts calculated (with the help of an evolutionary algorithm) by
the direct fuzzification of the original method used by Saaty in the AHP [6]. Note that the supports of the
fuzzy weights are about the same for A, and 4s but our Ay, method produced smaller supports for the fuzzy
weights in A2,A-3,A-4 and £. But what is more important is that the An. method gave smaller supports for
the final fuzzy weights 7;,7, and 7;. The final decision (which alternatives are the best?) is easier when the
final fuzzy weights have smaller supports. The final fuzzy weights 7y, 7,73 are given in Fig. 7. We see that
Hy={41,43}, Hi ={4,} and the student selected 4, the decision which is, in this case, identical with the

result of [16].

[3

194

08 fooeeeo] R0 SSSURRRURURUURY U VOURUOR
0.6 deeeeeiiie, SR\ USRTOREN SUNUN VUSSR
04 deo oo

02 4

T r

0 0.1 0.2 0.3 0.4 0.5 0.6 07

Fig. 7. The final fuzzy weights.

6. Summary and conclusions

In this paper we presented a method of performing fuzzy hierarchical analysis fuzzifying the Am.x method
of Saaty. Important results of our new method are: (1) it can handle any type of fuzzy number used for
pairwise comparisons; (2) it is computationally easy (does not require an evolutionary algorithm as in [6])
since all we need to compute are eigenvalues and eigenvectors of positive matrices; and (3) it reduced the
fuzziness in the final fuzzy weights compared to the procedure used in [6]. Relative to the third point made
above, our new method did not always reduce the fuzziness in the weights (w3, in Table 1(1), W}s in
Table 1(5)), but the final fuzzy weights (Table 1(7)) had less fuzziness. A major topic for future research is
to show that the sufficient condition (Section 3) always holds for fuzzy, positive, reciprocal matrices.

References

[t] C.G.E. Boender, J.G. deGraan, F.A. Lootsma, Multi-criteria decision analysis with fuzzy pairwise comparisons, Fuzzy Sets and
Systems 29 (1989) 133-143.
[2] J.J. Buckley, Fuzzy hierarchical analysis, Fuzzy Sets and Systems 17 (1985) 233-247.
(3] 1.J. Buckley, Fuzzy eigenvalues and input-output analysis, Fuzzy Sets and Systems 34 (1990) 187-195.
[4] J.J. Buckley, Solving fuzzy equations, Fuzzy Sets and Systems 50 (1992) 1-14.
[51 J.J. Buckley, V.R.R. Uppuluri, Fuzzy hierarchical analysis, in: V.T. Covello, L.B. Lave, A. Moghissi, V.R.R. Uppuluri (Eds.),
Uncertainty and Risk Assessment, Risk Management and Decision Making, Plenum, New York, 1984, pp. 389-401.
[6] 1.J. Buckley, T. Feuring, Y. Hayashi, Fuzzy hierarchical analysis revisited, European J. Oper, Anal, under revision.
[7] S.-M. Chen, Evaluating weapon system using fuzzy arithmetic operations, Fuzzy Sets and Systems 77 (1996) 265-276.
[8] C.-H. Cheng, Evaluating naval tactical missile system by fuzzy AHP based on the grade value of membership function, European
J. Oper. Res. 96 (1996) 343-350.
[9] C.-H. Cheng, D.-L. Mon, Evaluating weapon system by analytical hierarchy process based on fuzzy scales, Fuzzy Sets and Systems
63 (1994) 1-10.
[10] M. Fedrizzi, R.A. Marques Pereina, Positive fuzzy matrices, dominant eigenvalues and an extension of Saaty’s analytical hierarchy
process, Proceedings of IFSA World Congress, Sao Paulo, Vol. II, Brazil, 1995, pp. 245-247.
[11] O. Gogus, T.O. Boucher, A consistency test for rational weights in multi-criterion decision analysis with fuzzy pairwise comparisons,
Fuzzy Sets and Systems 86 (1997) 129-138.
(12] O. Gogus, T.O. Boucher, Strong transitivity and weak monotonicity in fuzzy pairwise comparisons, Fuzzy Sets and Systems 94
(1998) 133-144. :
[13] C.-L. Hwang, K.-Yoon, Multiple Attribute Decision Making, Lecture Notes in Economics and Mathematical Systems, Vol. 186,
Springer, Berlin, 1981.
{14] M. Kwiesielewicz, A note on the fuzzy extension of Saaty’s priority theory, Fuzzy Sets and Systems 95 (1998) 161-172.
(15] P.J.M. Laathoven, W. Pedrycz, A fuzzy extension of Saaty’s priority theory, Fuzzy Sets and Systems 11 (1983) 229-241.

T e - 195

[16] F.A. Lootsma, Performance evaluation of nonlinear optimization methods via multi-criteia decision analysis and via linear model
analysis, in: M.J.D. Powell (Ed.), Nonlinear Optimization, Vol. 1981, Academic Press, Lyndon, 1982, pp. 419-453.

{17] F.A. Lootsma, Rank preservation of propagation of fuzziness in pairwise-comparison methyds for multi-criteria decision analysis, in:
G. Fandel, M. Grauer, A. Kurzhanski, A.P. Wierzbicki (Eds.), Large-Scale Modeling an« Interactive Decision Amalysis, Springer,
Berlin, 1986, pp. 127-137.

[18] BK. Mohanty, N. Singh, Fuzzy relational equations in analytical hierarchy process, Fuzzy Sets and Systems 63 (1994) 11-19.

[19] D.-L. Mon, C.-H. Cheng, J.C. Lin, Evaluating weapon system using fuzzy analytic' hierarchy process based on entropy weight, Fuzzy
Sets and Systems 62 (1994) 127-134.

{20] X. Ruoing, Z. Xiaoyan, Extensions of the analytic hierarchy process in fuzzy environmex, Fuzzy Sets and Systems 52 (1992)
251-257.

[21] X. Ruoing, Z. Xiaoyan, Fuzzy logarithmic least squares ranking method in analytical hierarchy process, Fuzzy Sets and Systems 77
(1996) 175-190.

{22] T.L. Saaty, A scaling method for priorities in hierarchical structures, J. Math. Psychol, 15 (1977) 234281,

[23] T.L. Saaty, Exploring the interface between hierarchies, multiple objectives and fuzzy sets, Fuzzy Sets and Systems 1 (1978) 57-68.

{24] T.L. Saaty, The Analytic Hierdrchy Process, McGraw-Hill, New York, 1980.

[25] A.A. Salo, On fuzzy ratio comparisions in hierarchical decision models, Fuzzy Sets and Systems 84 (1996) 21-32.

1 INTRODUCTION

DATA mix?mg has attracted a significant amount of
research attention due to its usefulness in many
applications, including selective marketing, decision sup-
port, business management, and user profile analysis, to
name a few [6], [7], [11], [14]. Among others, data clustering
is one of the most active research areas {16], [18]. The data
clustering techniques can be used to perform similarity
search, pattern recognition, trend analysis, grouping,
classification, and so forth [7], [14], [26].

In general, there are two types of attributes associated
with input data in clustering algorithms, ie., numerical
attributes [1], [4], [25], [29], [31] and categorical attributes
[13], [30]. Numerical attributes are those with a finite or
. infinite number of ordered values, such as the height of a
person or the x-coordinate of a point on a 2D domain. On
the other hand, categorical attributes are those with finite
unordered values, such as the occupation or the blood type
of a person. In this paper, we focus only on the clustering of
numerical data. v

Many data clustering algorithms have been proposed in

the literature. These algorithins can be categorized into-

nearest-neighbor clustering [22], fuzzy clustering [3), parti-
tional clustering [9], [20], [23], hierarchical clustering [19],
[27], artificial neural networks for clustering [15], statistical
clustering algorithms [8], [28], density-based clustering

o The authors are with the Electrical Engineering Department and Graduate
Institute of Communication Engineering, National Taiwan University,
Taipei, Tatwan, ROC. E-mail: {owenlini, mschen)@arbor.ee.ntu.edu.tw.

Manuscript received 16 Aug. 2002; revised 21 Aug. 2003; accepted 9 Mar.
2004; published online 17 Dec. 2004.

For information on obtaining reprints of this article, please send e-mail to:
- thde@computer.org, and reference IEEECS Log Number 117145.

1041-4347/05/520.00 © 2005 {EEE

A
=
»
;~\\\
A
o
O

algorithm [5], [10], and so on. In theses methods, hierarch-
ical and partitional clustering algorithms are two primary
approaches in research communities. Hierarchical cluster-
ing algorithms can usually find satisfiable clustering resuits.

" A hierarchical clustering algorithm is able to obtain

different clustering results for different similarity require-
ments. However, most of those hierarchical algorithms are
very computationally intensive and require much memory
space. Both of the two well-known hierarchical algorithms,
i.e., single-link [27] and compiete-link [19] algorithms, require
time complexity of O(n?logn), where n is the number of
input points. Algorithm CURE [12], which is an improve-
ment of the single-link algorithm, though being able to lead
to good clustering results, is, in essence, very costly in its
computational overhead.

On the other hand, most partitional clustering algorithms
run in linear time. With better efficiency, the clustering
quality of a partitional algorithm is, however, not as good as
that of hierarchical algorithms. The k-means clustering
algorithm is one of the most famous partitional clustering
algorithms [23]. Although widely used, the k-means
algorithm suffers from some drawbacks, including: 1) de-
pendency on the input order; 2) the tendency to result in

_local minimum, and 3) limited applicability to only the data

set consisting of isotropic clusters (ie., a circle in the
2D domain or a sphericity in the 3D domain).

Several clustering methods have been proposed to
combine the features of hierarchical and partitional

- clustering algorithms. In general, these algorithms first
.partition the input data set into m subclusters. Ther,

these algorithms construct a hierarchical structure based
on these m subclusters. As shown in Fig. 1, the data set is
first partitioned into 15 subclusters and these subclusters
are next grouped into two clusters.

Pubiished by the IEEE Computer Society

146

(a)

(b)

Fig. 1. An illustration of a hybrid clustering algorithm. (a) Step 1: Form several small clusters. (b) Step 2: Merge small subclusters into clusters.

This hybi'id idea of clustering is first proposed in [24]
where a multilevel algorithm is developed. At the first leve],

the multilevel algorithm partitions the data set into several -

partitions and then performs the k-means algorithm on each
partition to obtain several subclusters. In subsequent levels,
this algorithm uses the centroids of the subclusters
identified in the previous level as the new input data
points and performs the hierarchical clustering algorithm
on those points. This process continues until exactly
k clusters are determined. Finally, the algorithm performs
a top-down process to reassign all points of each subcluster
to the cluster of their centroids. However, representing a
subcluster by only one point makes this multilevel algo-
rithm not applicable to some cases, especially when the
sizes of those subclusters are similar to that of the merged
cluster.

Algorithm BIRCH is one of the most efficient clustering
algorithms [31]. In BIRCH, only one scan is needed to obtain
good clustering results. One or more additional passes can
be used to further improve the clustering qualities.
Algorithm BIRCH first partitions the input data set into
many small subclusters and then applies a global clustering
algorithm on those subclusters to achieve the final results.
The main contribution of BIRCH is as an efficient data
preprocessor for large input data sets. It does not focus on
the design of global clustering algorithm, which can be
effectively applied on subclusters. In view of this, a new
definition of distances between two data bubbles (sub-
clusters) are proposed in [5]. The algorithm proposed first
executes BIRCH to obtain many small data bubbles and
then applies a modified algorithm of OPTICS with the new
definition of distance between data bubbles.

In most related studies, the dissimilarity between two
clusters is defined as the distance between their centroids
or the distance between two closest (or farthest) data
points. However, these measures are vulnerable to outliers
and removing outliers precisely is yet another difficult
task. This is the very reason that most prior clustering
methods do not perform stably for various types of inputs.
In view of this, we propose a new similarity measure,
referred to as cohesion, to measure the intercluster
distances. Using cohesion, we have designed a two-phase
clustering algorithm, called cohesion-based self-merging
(abbreviated as CSM), which runs in time linear to the size

X

of input data set. Combining the features of partitional and
hierarchical clustering methods, algorithm CSM partitions
the input data set into several small subclusters in the first
phase and then continuously merges the subclusters based
on cohesion in a hierarchical manner in the second phase.
The time and the space complexities of algorithm CSM are
analyzed. Our performance studies show that the pro-
posed similarity measure, cohesion, is more effective than
others. With cohesion, algorithm CSM is not only very
robust to the existence of outliers, but also able to lead to
better clustering results than most prior methods while
incurring much shorter execution times.

The rest of the paper is organized as follows: Section 2
presents the preliminaries. Algorithm CSM is presented in
Section 3. Performance studies are conducted in Section 4.
This paper concludes with Section 5.

2 PRELIMINARIES

Given a desired number of clusters &, data clustering is the
process of partitioning the input data points into clusters
so that the points in each cluster are similar to one another
and are different from the points in other clusters. For
example, for the data set shown in Fig. 2a, a data clustering
algorithm with k=2 may partition these points into
two clusters, {4, B,C, D} and {E, F,G}. We review several
prior algorithms related to this study in the following.

2.1 Hierarchical Clustering Algorithms

As its name implies, a hierarchical clustering algorithm
establishes a hierarchical structure as the clustering result.
Consider the example in Fig. 2a. One possible hierarchical

_structure is shown in Fig. 2b. With the hierarchical

structure, we can obtain different clustering results for
different similarity requirements. As shown in Fig. 2b, if the
similarity requirement is set at level 1, the input data set is
partitioned into two clusters, i.e., {A4,B,C,D} and
{E, F,G}. However, if the similarity requirement is set at
level 2, then 'the input data set is partitioned into six clusters,
ie, {4, B}, {C}, {D}, {E}, {F}, and {G}.

Most existing hierarchical clustering algorithms are
variations of the single-link and complete-link algorithms.
Both -algorithms require time complexity of O(n’logn),

¥

(@ {b)

Fig. 2. [Hustrative hierarchical clustering results for a data set of
seven points. (a) The input data set. (b) A possible hierarchical tree.

where n is the size of the input data set. Owing to their good
quality of clustering results, hierarchical algorithms are
widely used, especially in document clustering and
classification. The outline of a general hierarchical cluster-
ing algorithm is given below:

Hierarchical Clustering Algorithm

1. Initially, each data point forms a cluster by itself.
The algorithm repetitively merges the two closest
clusters.

3. OQutput the hierarchical structure constructed.

A single-link clustering algorithm differs from a com-
plete-link clustering algorithm in the intercluster distance
measure, ie., Step 2. The single-link algorithm uses the
distance between the two closest points of the two clusters
as the intercluster distance, i.e.,

dist(Ci, C,-) = mjn{dist(o,-,oj)lo,- € Ci,05 € Cj},

while the complete-link algorithm uses the distance of
two farthest points as the intercluster distance, i.e.,

d'ist(C,-,C_.,-) = max{dist(o,-,oj)[o.i 5 C,',Oj S C]}

As shown in Fig. 3a, the single-link algorithm suffers from
the so-called chaining effect and the complete-link cluster-
ing algorithm has problems in dealing with particular
shapes, such as the circles shown in Fig. 3b.

In the single-link algorithm, we can maintain a pointer to
the closest neighboring cluster for each cluster. After
merging Cluster C; into Cluster C;, the single-link algorithm
needs only to update those clusters whose closest neighbor
is C; and change it to C;. With this implementation, the
space complexity required by the single-link clustering
algorithm is only O(n). However, the same mechanism
cannot be applied to the complete-link algorithm. Instead,
the complete-link algorithm needs to keep all the distances
of any two points and, thus, is of space complexity O(n?).

Algorithm CURE [12] is an improvement over the single-
link clustering algorithm. CURE selects several scattered
data points carefully as the representatives for each cluster
and shrinks these representatives toward the centroid in
order to eliminate the effects of outliers and avoid the
chaining effect. The distance between two clusters in CURE
is defined as the minimal distance between the two rep-
resentatives of each cluster. In each iteration, it merges the
two closest clusters.

147

(b}

Fig. 3. 'Exambles of the clustering capability of the single-link and
compiete-link clustering algorithms. (a) Clustering results by the single-
link algorithm. (b) Clustering results of the complete-link algorithm.

It.is known that CURE is one of the most successful
clustering methods for clustering the data of any shape.
However, it is very computationally intensive. The time
complexity of algorithm CURE is essentially O(n%logn). In
addition, algorithm CURE utilizes a spatial searching data
structure, kd-tree, to search the nearest representatives. As -
pointed out in [2], this kind of searching structure does not
work well in a high-dimensional data set. This fact limits
the appficability of CURE. The sampling and partitioning
technique adopted by algorithm CURE may accelerate the
computation. However, most sampling techniques are
orthogonal to clustering algorithms, i.e., . a clustering
algorithm can usually be easily. integrated with most
sampling techniques by no or slight modification. Please
also note that, while being widely used, random sampling
suffers from the problem of missing small clusters. In view
of this, a density biased sampling algorithm is proposed in
[10). In this paper, we will focus on the clustering problem.

2.2 Partitional Clustering Algorithms]

The k-means algorithm is one popular partitional algorithm
for data clustering. However, the k-means algorithm suffers
from the tendency of resulting in local minimum and is
likely to obtain different clustering results with different

initial states. The clustering results are also dependent on -

the sequence of the input data. The adoption of Euclidean
distance as the similarity measure causes. the application of
the k-means algorithm to be limited to data sets consisting
of only isotropic clusters, thus refraining it from being used
in many real applications. Nevertheless, most partitional
algorithms have the advantages on the execution time and
the space required. The outline of the k-means algorithm is

given as follows:

Algorithm K-Means

1. Initially, select k centroids arbitrarily for each
cluster Cy, i € [1,k].

2. Assign each data point to the cluster whose centroid

is closest to the data point.

Calculate the centroid ¢; of cluster C;, i € {1,k].

4. Repeat Step 2 and Step 3 until no pomts change
between clusters.

b

148

2.3 Expectation Maximization Algorithms

In addition to using distance as the similarity measure, the
Expectation Maximization (EM) algorithm uses probabil-
ities to measure the similarities. It is assumed that the points
of a cluster follow a certain distribution [8]. By assuming the
parameters of the distribution of each cluster, EM utilizes
probability to judge which cluster a data point should be
assigned to. Algorithm EM then adjusts the parameters of
each cluster’s distribution according to the data points in
that cluster. Next, it reassigns these points according to the
new distributions. These iterations continue until the
clustering results converge. For example, if the distribution
of Cluster C; follows a given probability density function
(abbreviated as pdf) fc.(v), then. the probability for a point
with position v to belong to this cluster is:

P(|Cy) x P(C;) _P(Cy)
P(v) ~ P(v)
If a point at location v is more likely to belong to Cluster C;

than to Cluster Cj, ie,, P(Cijv) > P(Cjlv), then this point
will be assigned to Cluster C;. :

P(Cilv) =

fe,(v).

2.4 Hybrid Clustering Algorithms
Since the complexity of hierarchical data clustering is
relatively - high, several improved algorithms have been
proposed, such as the hybrid clustering algorithm
proposed in [24] and algorithm BIRCH [31]. The-hybrid
algorithm in [24] is a multilevel algorithm. In the first
level, the input data set is divided into P, partitions
equally. Then, the hybrid algorithm performs a k-means
algorithm to get C clusters in each partition. In level 1,
where i > 1, the centroids of the clusters obtained in level
i—1 are taken to this level for merging. These centroids
are partitioned into P, partitions. In each partition, the
hybrid algorithm performs a hierarchical clustering
algorithm to get C; clusters. This process continues until
exactly k clusters are identified. Finally, the algorithm
performs a top-down process to reassign all points of
each subcluster to the cluster of their centroid. This
algorithm is shown to be very efficient in both aspects of
computation’ and memory space. However, using only
one point to represent the whole cluster may easily lose
some information about the distributions of clusters,
which are important to the similarity of two clusters.
Another hybrid clustering algorithm, BIRCH, is designed
to deal with large input data sets. BIRCH uses cluster
Sfeatures (CF) to represent a subcluster. Given the CF of a
subcluster, one can obtain the centroid, radius, and diameter
of that subcluster easily (in constant time). Furthermore,
the CF vector of a new cluster formed by merging
two subclusters can be directly derived. from the CF vectors
of the two subclusters by algebra operations. Algorithm
BIRCH consists of four phases. In Phase 1, BIRCH partitions
the input data set into many subclusters by a CF tree. In
Phase 2, it reduces the size of the CF tree (i.e., the number of
subclusters}) in order to apply a global clustering algorithm
in Phase 3 on those generated subclusters. In Phase 4, each
point in the data set is redistributed to the closest centroids
of the clusters produced in Phase 3. Among these phases,
Phase 2 and Phase 4 are used to: further improve the
clustering quality and are thus optional. Algorithm BIRCH
does not specify the global clustering algorithm. However,

4.

if a clustering algorithm, which can find clusters in any
shape, is adopted in Phase 3, then Phase 4 will need some
slight modifications to keep the shape information. More
specifically, each cluster produced in Phase 3 should be
represented by several points instead of only the centroid.
However, the main contribution of BIRCH is as an efficient -
data preprocessor for a large input data set so that the
global clustering algorithm can be executed efficiently.
Algorithm CHAMELEON is also a hybrid clustering
algorithm [17]. The outline of the algorithm is as follows:

Algorithm CHAMELEON

1. Construct a k-nearest neighbor graph.
Partition the k-nearest neighbor graph into many
small subclusters.

Merge those subclusters into final clustering results.

Note that the k-nearest-neighbor graph is buiit by connect-
ing each node with its k nearest-neighboring nodes.
Different from most of clustering algorithins, it considers
not only the interconnectivity (the number of links between

_ two clusters) but also the closeness (the length of those links)

as the similarity measure of two clusters. Their experiments
also show the éexcellent clustering quality. However, the
time complexity of building a k-nearest-neighbor graph of a
high-dimensional data set is as high as O(n?), which makes
CHAMELEON infeasible for large data sets.

3 COHESION-BASED SELF-MERGING ALGORITHM
In this section, we describe the details of the cohesion-

_based self-merging algorithm (abbreviated as CSM). In

Section 3.1, we propose a new measure for the similarity
of two subclusters, cohesion, which is Intrinsically different
from other prior measures. Cohesion is more appropriate

" for an intercluster similarity measure because it does not

judge the similarity of two subclusters by only some data
points. Rather, the cohesion measure takes the distribu-
tions of the two clusters into account. In Section 3.2,
based on cohesion, we devise a clustering algorithm,
CSM, which fully utilizes the features of cohesion. We .
also describe a general outlier removal mechanism in
Section 3.3 to enable algorithm -CSM to resist outliers.
(Note that the colored versions of some figures in this
paper can be found at http://arbor.ee.ntu.tw/~owenlin/
tkde_csm/.)

3.1 Similarity Measure between Subclusters .

As shown in Fig. 4, the distance between the centroids of
the two clusters-in Fig. 4a and that of the two clusters in
Fig. 4b are the same. The two clusters shown in Fig. 4b,
however, are more inclined to be merged together. In
addition to the distance between centroids,. the average

A m) ¢or each p; € C; and

complete distance (ie, AT

'p; €C;) is another method to measure the intercluster

similarity of two clusters. However, with much more
computation, the average complete distance cannot even
distinguish between .the two cases shown in Fig. 4. The
average complete distance is 20.40 in Fig. 4a and 21.57 in
Fig. 4b. (In contrast, as can be verified later, the correspond-
ing cohesions are 2.21 x 107! in Fig. 4a and 2.17 x 1074 in

149

Fig. 4. Mustration for subclusters that have different cohesion values. (a) Two clusters with smaller cohesion. {b) Two clbsters with greater cohesion.

Fig. 4b.) Several alternatives, such as the distance between
the closest (or farthest) points of the two clusters, could be
employed to redeem this deficiency. However, those
measures are very vulnerable to random noises (outliers).
Consequently, we propose a new similarity measure,
namely, cohesion, based on the joinability of two clusters,
referring to the existence of a data point. Conceptually,
joinability is the merging inclination of two clusters
according to the existence of a shared data point. Thus,
joinability is expected to have the following properties:
1) Data points located closer to the boundary of the
two clusters are more important and 2) the merging
inclination should not be determined by only a few points,
ie, the value of joinability should not vary dramatically.
Formally, we have the following definition for joinability:

Definition 1. The joinability of the two clusters (C; and C;)

referring to the existence of the point p with location v is
defined as:

join(p, C, Cj) = Injn(fi(v)v f.’l(v))’

where f; and f; are the probability (density) function of the
distributions in Cluster C; and Cj, respectively.

An illustration of joinability is shown in Fig. 5. In Fig. 5,
the joinabilities of the data points at v; and v, are j; and Ja,
respectively. With the notion of joinability, the definition of
cohesion of two clusters is given below:

Definition 2. The cohesion of two clusters (C; and Cy) is
defined as :

Z]AO‘I:TL(p, Cf! CJ)
peC;,Cy
ICi| + !Cj] v '

where |Cy] is the size of Cluster C;.

chs(Cy, C;) =

& = joinability
a
=
S’

e

Fig. 5. An illustration for the meaning of joinability.

In general, the pdf f(v) can be evaluated in constant time.
Thus, the time complexity of the computation of cohesion
of two clusters (C; and Cj) is linear to the size of the
two clusters, i.e., O(|Ci| + |Cj).

In this paper, we assume the location of a point in each
cluster follows a multivariate normal distribution, i.e.,
V~N4(u,?), where d is the dimension of the space, p is
the mean vector, and ¢ is the covariance matrix. The
probability density function is

) = () Hder) e [L%
where ‘

A%0) = (v— w) ¥ (v -).

Please note that, in this formula, the location of a point
(i.e, v) and the mean vector (i.e., p) are both d-variate
vectors and the covariance matrix (i.e., ¥) is a positive,
definite d x d matrix.

Since the values of the mean vector and covariance
matrix are unknown in advance, we use the maximum
likelihood estimator of (4,) in practice. Given a cluster of
n points with locations {vy, vy, . . ., v,), the values of (u, %) of
the cluster are estimated by the following formulae:

and

V=5 2 (v - B) (i - B)T.

This similarity measure of cohesion is robust to the
existence of outliers due to the following two reasons:
1) Using the cohesion measure, instead of only a few of
points, all points of the two subclusters are considered to
evaluate this intercluster similarity and 2) this cohesion
measure makes the effect of outliers much smaller than that

- of other points’ since outliers are much. farther from the

centroid of the two clusters. For example, for the four pairs of
clusters shown in Fig. 6, cohesions between these pairs of
clusters are 2.99 x 10~° in Fig. 6a, 1.63 x 1076 in Fig. 6b,
5.23 x 1078 in Fig. 6¢, and 8.52 x 10~° in Fig. 6d. It can be
noted that, comparing with the cohesion value in Fig. 6b, i.e.,
1.63 x 1078, the cohesions of Fig. 6b and Fig. 6c are similar to
the original one, i.e., cohesion is robust to the effects of
outliers.

r

150

- (a)

{b)

()

(d)

Fig. 6. An illustration of the robustness of the cohesion measure against outliers. (a) Two clusters. (b) Two closer clusters. (c) Two clusters with a link

between them. (d} Two clusters with tails.

TABLE 1
All the Cohesions in Exampie 3.2

Ch - Cla Cls Cly Cls Clg
Cly - 2.32x 1073 [2.05 x 10-0 [488 x 102 | 5.34 x 107 | 3.74 x 107
Cly [232 % 10-% - 831 x107° | 3.32x107° [6.36 x 1072 | 3.01 x 1017
Cly [205 x 107 | §.31 x 10~ — 411 x 1077 1333 x 1075 | 251 x 10
Cly {48 x 10721 332100 | 411 x 107 - 5.82 x 10771292 x 10°17
Cls | 534107 [636 x 1072 | 333 x 10-5 | 5.82 x 10~ 12 - 4.08 x 10~
Clg | 374 %107 1391 x 10" 1T 1251 x 10~ | 2.92 x 10-13 | 4.08 x 10-5. -

3.2 Algorithm CSM
Now, we describe the proposed algorithm based on
cohesion self-merging as follows:

Algorithm CSM

//Tnput: The input data set, the size of the data set, n, the number

of subclusters, m, and the desired number of clusters, k.
//Output: The hierarchical structure of the k clusters.

1. Apply k-means on the input data- set to obtain
m subclusters.

2. Apply the single-link clustering algorithm on the
m subclusters produced in Step 1 with cohesion as
the similarity measure and. stop when k clusters are
obtained.

Example 3.2. Consider the data set shown in Fig. 7. We-

apply algorithm CSM with & = 2 and m = 6 to it. In the
first phase, as shown in Fig. 7, algorithm CSM partitions

Fig. 7. An illustrative example of algorithm CSM.

the data set into six subclusters. In the second phase,

algorithm CSM tries to merge the six subclusters into two

clusters by their cohesions. The cohesions between these

subclusters are shown in Table 1.

Since the largest cohesion is chs(Cly, Cl3) = 6.31

x 10~9, we first merge cluster Cly and cluster Cl3. Then,

we find the next large cohesion, i.e., chs(Cly, Cls) = 5:34.

x 1073, and merge cluster Cl; and cluster Cls. Similarly,

we merge Cl3 and Cl; and then Cls and Clg. Finally, the

two clusters reached by CSM are {Cl;,Cls;,Cls} and -

{Cl,, Cls, Cly}. '

Algorithm CSM is a two-phase clustering algorithm. In
the first phase, it adopts the k-means algorithm to divide
the input data set into m subclusters. At the beginning of
Phase 2, it obtains the cohesions of these m subclusters
produced in the first phase. Then, algorithm CSM performs
a single-link clustering algorithm based on cohesion to
obtain the final clusters.

In algorithm CSM, the parameter m, i.e., the number of
subclusters, is the only additional parameter. We can
obtain desired clustering results by adjusting the value of
m. It is clear that the value of parameter m falls in the
range of [k, n). When m = k, algorithm CSM is degenerated
to the k-means clustering algorithm. When m approaches
n, this algorithm is reduced to the single-link algorithm. It
is known that the k-means algorithm is good for obtaining
clusters of isotropic shape, while the single-link algorithm
is able to find clusters of any shape. With prior knowledge,
we can make the clustering algorithm' adapt to various
inputs by adjusting the parameter m. As will be validated

by our performance studies later, algorithm CSM, in
general, leads to better clustering results than those by
most prior methods, showing not only the generality but
also the advantage of algorithm CSM over the k-means and
single-link methods.

3.3 Complexity Analysis

Theorem 1. The time complexity of algorithm CSM is
O(mnl +m?logm), where | is the number of iterations in
the k-means algorithm.

Proof. In Phase 1, algorithm CSM takes time of complexity

O(nmi) to apply the k-means algorithm on the input data
set to obtain m subclusters. Then, at the beginning of
Phase 2, the values of cohesion between any
two subclusters are evaluated. Recall that the time
complexity of each evaluation is linear to the size of
the clusters. Thus, the time complexity is

o(z‘zuc,-; + ;c,-;)) = o(%ZZ(lcil + ICJ-I)>

> i g

- O(%Z <(m - 2)|Ci] + ;ICJ'I))

- O(%n;m - 1)) = Ofnm).

Next, algorithm CSM applies the single-link cluster-
ing algorithm to those subclusters and has time in
order of O(m?logm). The time complexity of algo-
rithm CSM is therefore O(mnl+ nm +m?logm) =
O(mnl + m?logm). O
Note that the number of main iterations (i.e., !} in
algorithm k-means is data dependent and determined
empirically. However, experiments reveal that the k-means
algorithm takes only a few iterations to converge.

Theorem 2. The space complexity of the algorithm is O(n).

Proof. In the first phase, we only need the memory space
to store the input data set and the group relationship of
subclusters, which requires the memory space of
complexity’ O(n). In the second phase, memory space
is required for the single-link clustering algorithm.
Thus, the space complexity is O(m). Since m is always
smaller than n, the total space complexity of algorithm
CSM is O(n). o

3.4 Resilience to Outtiers

Outliers are those random points that are very different
from others and do not belong to any clusters. In algorithm
CSM, we adopt cohesion as our similarity measure to resist
the effects of outliers within a subcluster. However, it is
possible that some subclusters consist only of outliers. We

will get those noise clusters especially when we partition -

the input data set into too many subclusters. Those noise
clusters will affect the correctness of the subsequent
merging. Consider an example shown in Fig. 8. (One may
note that the data sets in these figures are not identical to
one another. This is because the data sets have been
properly sampled in order to be clearly displayed.) In this
example, algorithm CSM first partitions the input data set
into 128 subclusters and then start to merge closest clusters

151

pair by pair. The clustering process works well until those
subclusters are merged into 12 clusters (as shown in Fig. 8a).
However, in the next step, the upper two clusters are
merged together undesirably (as shown in Fig. 8b) due to
the existence of those noise clusters. Finally, those sub-
clusters are merged into five clusters, as shown in Fig. 8c.
However, after applying the noise removal mechanism
introduced in this section, we can correctly identify the five
clusters, as shown in Fig. 8d.

As shown in Fig. 9, there are two kinds of noise clusters,
i.e.,, sparse noises and dense noises. Note that those sparse
noise clusters are likely to be merged with others and, thus,
may become bridges between subclusters which should be
separated. For example, the sparse noise cluster shown in
Fig. 9 may be merged with Cluster A and Cluster B. It-also
should be noted that the density of clusters could vary in
different regions in a large data set. The noise clusters in
one region are possibly even denser than some normal
clusters in another region. Thus, it is hard to identify those

. sparse noise clusters. Instead of trying to identify those

noises and remove them immediately, algorithm CSM first
makes those sparse noises harder to join into normal
clusters and then they can be removed with those dense
noises toéether. (It is assumed that the number of points in a
noise cluster is much less than that of a normal cluster.)
Algorithm CSM adopts density impedance to achieve this.
More specifically, given two clusters C; and C;, the density
impedance of the two clusters is defined as

C;.density() + Cj.density()
2/Ci.density() x Cj.density()

impedance (C,-, Cj) =
Algorithm CSM then defines the similarity of
two clusters as

cohesion(C;, C;)-
‘impedance(C;, C;)™’

where « is named the impedance factor and is specified by
users to control the effect of impedance. Then, when those
m subclusters are merged into m’ subclusters, where m’ is a
predefined number such that k¥ < m’ < m, algorithm CSM
will try to remove those sparse and dense noises clusters.
The value of density impedance is only related to the

density ratio of -the two clusters. The relationship between

them is shown in Fig. 10. _ _

In order to quantify the meaning of sparseness, we first
define the volume and the density of a cluster. Recall that
the pdf of a multivariate normal distribution (N, (x, %)) is

$10) = (m) Wt Herp - 30700
where

A*(v) = (v—)Ty (v -).
Thus, the contours of the pdf will satisfy the condition

(v- ﬂ)Tiﬁ‘l(v —-p)=c

152

(©)

{d)

Fig. 8. Aniilustrative example of the effects of noise clusters. (a) Intermediate clustering state of 12 subclusters (five normal clusters and seven noise
clusters). (b) Intermediate clustering state of 11 subclusters. (c) The final clustering resuit (three clusters are mixed together). (d) The clustering

result after removing those noise clusters.

For simplicity, we assume u=0 in the following
discussion. Since ¥ isa d x d symmetric matrix, there exist
d real eigenvalues, i.e., Ay, Mg, ... ,Ad, and associated
eigenvectors, ie., 51,0, ..., 04, of unit length that can be
chosen to be mutually orthogonal to one another. Next,
making a dxd matrix B as (31,082, Ba), we have
BTB =1, ie, BT = B~.. Then, we change the coordinate
in such a way that the new coordinate v of vector v will
satisfy the equation: v=Bv. Note that this is a rigid
transformation, i.e., all the angles and lengths will be
preserved after the transformation. According to this

Dense Noises

)

Cluster A

Cluster B

Sparse Noises

Fig. 9. The two kinds of noise clusters generated in Phase 1 of algorithm
CsSM.

transformation, we can present the function of the contour
as vT (BT 'B)v = c. Since matrix B consists of eigenvec-
tors, we have '

A0 0 0

~1
(BTIII_IB)= 0 At 0 0
0 :
0o A7t

density impedence

L1s |

impedence
-
L

1.05

1

2 a 0 1 2
log(d1/d2)

Fig 10. The density impedence of two clusters with density asd, and dp.’ -

183

Fig. 11. The clustering results of algorithm CSM on the four input data sets. {a) CSM on Data Set 1. (b) CSM on Data Set 2. (¢) CSM on Data Set 3.
(d) CSM on Data Set 4. (¢) CSM on Data Set 5. (f) CSM on Data Set 6.

As a result, the contour is a hyperellipse with /X;, Definition 4. The density of Cluster C; is defined as

V2, ...v/Aq as the length of each axis. Therefore, the volume Ic|
and density of a cluster can be defined as follows: Cidensity() = m,

Definition 3. The volume of Cluster C; is defined as where C;.volume is the volume of C; and |C;| is the number of

Civolume = /X Mg... Mg = y/det (BT¢,.B) points in Cluster C;.

_ - The outlier removal mechanism is formally stated as
= \/detB det(y;) det B =y det(s:), follows. Note that the’ impedance factor, @, and size_ratio
where +; is the covariance matrix of cluster C,. are two parameters specified by users.

154

TABLE 2 '
Exe.cution Details on Each Data Set by CSM

n | m | k| Average execution time
Data Set 1.1 10000 | 10| 5 0.75 sec..
Data Set-2 {10000 [10] 5 0.82 sec.
Data Set 3 | 10000 | 16 | 5 1.82 sec.
Data Set 4 | 8000 | 48[6 3.18 ssc..
Data Set 5 | 10000 { 64 | 9 5.51 sec.
Data Set.6 | 8000 | 96 | 8 6.13 sec.

Outlier Removal Procedure

1. At Phase 2, algorithm CSM merges those subclusters
by the similarity defined as

cohesion(C;, C;)
impedance(C;, c)®

2. When those m subclusters are merged into
m' subclusters, algorithm CSM removes all the
subclusters whose sizes are less than the threshold
defined as

. o1 .
size_ratio X 7—n—/2 |Gl

With proper parameter settings, algorithm CSM can
precisely remove those noise clusters and result in cluster-
ing of better quality.

4 PERFORMANCE STUDIES

To assess the performance of algorithm. CSM, we have
conducted. a series of experiments. These experiments are
performed on a computer with an 800 Mhz Intel CPU and
1.7G of memory. Several similarity measures are evaluated
in Section 4.1. In Section 4.2, we compare the clustering
quality of CSM with several prior clustering methods.

4.1 Experiment I: Comparing with Other Measures

We perform our experiments on the data sets shown in
Fig. 11. Data Set 1 is generated from normal distribution
and the sizes of clusters follow the Zipf distribution. Data
Set 2 is in the same layout of Data Set 1. However, the

density of clusters in Data Set 2 varies, while the density of

_clusters in Data Set 1 is uniform. Data Set 3 is the same one

used in CURE [12]. As stated in [12], both BIRCH and
single-link cannot partition this data set correctly. The othér
data sets are obtained from [17]. As stated in [17], both
DBScan and CURE cannot successfully partition some of the
data sets. The clustering results of algorithm CSM are
shown in Fig. 11, while the details are shown in Table 2.
Note that the values of parameter m are chosen so that
algorithm CSM can obtain the similar clustering results
each time. Recall that the algorithm is randomized. Thus,
we execute the algorithm 20 times.to obtain the average
execution time. As shown in these figures, algorithm CSM is
able to successfully partition these data sets. Note that the
clustering results shown in this paper have been properly
sampled in order to be clearly displayed. However, all
algorithms are performed on the whole data sets.

First, cohesion is compared with other similarity mea-
sures, including those measures (DQ, D1, D2, D3, D4)
defined in [31] and the distance of data bubbles defined in
[5]. We also define a new similarity measure based on the
density decrement and obtain an improvement over the
distance of data bubbles. These sunﬂanty Imeasures are
briefly defined below:

Definition 5. The szmzlarity measures DO, D1, D2, D3, and D4
between clusters C; and C; are defined in Table 3.

In the definitions presented in Table 3, the notation ¢; is
the centroid of Cluster C}, ¢;{k] is the value of ¢; in the kth
coordinate, |C;| means the number of points in Cluster C;,
and var(C;) is the variance of Cluster C;, which is defined as

EpsC,-lp - cilz‘
Definition 6. The dis't_ance between two data bubbles in
Euclidean vector space is defined as

dist(C;, Cj) =
lei = ¢5] = (e + e;) + nnDist(1,C;) + nnDist(1,C;)
if lo —c;| — (e +¢;) = 0,
max(nnDist(1, C;), nnDist(1, Cj)) otherwise,
where c; is the centroid of Cluster C;, e; is extent of Cluster C;,
and nnDist(k,C;) is a function of the estimated average k-

nearest-neighbor distance within the Cluster C;. The defini-
tions of e; and nnDist(k, C;) are formulated below:

TABLE 3
The Definitions of Similarity Measures

Name

Definition

Centroid Euclidian Distance

Do=Te = 2]

Centroid Manhattan Distance

Dl = z‘j Jeslk] = c; [k}
A=1

Average Inter-cluster Distance | D2 = ICTICH
. PipiEGUC; - P;il.z
Average Intra-cluster Dlgtalxce D3 = (Gl +IGN (G +1C51 - 1)

Variance Increase Distance

D4 = var(C; U ;) ~ war (C) — var (C})

1%y,

dist(rep,rep;)

noDist(1,Cp [, ¢

Fig. 12. Distance between two data bubbles.

dist(C,C;)

Y b -pf
7,p;€C

GG - 1)

e; = and

k 1/d
nnDist(k, C,) = <]_é—l) Xe&;,

where d is the dimension of the vector space.

As shown in Fig. 12, the distance between two data
bubbles is defined under the assumption that all the data
bubbles are spherical. However, this assumption does not
always hold. With the covariance matrix of each data
bubble (subcluster), we can extend the formula to elliptic
data bubbles. This improvement can be made by changing
the definition of extent as below.

Definition 7. The extent e; of an elliptic data bubble C; along the
direction of a unit length vector a is defined as

1
“ =W

where ¥, a d x d matrix, is the covariance matrix of the data
bubble C.. :

As shown in Fig. 13, this formula is derived from the fact
that the contours of the pdf, in a multivariate normal
distribution, satisfies the condition (v~)7 %! (v~ p) =c.
Thus, we have

(ta)Tw,-'l(ta) =c=t*xaTyila=c
¢

;4
= ()

Here, the value of parameter c is chosen as four so that
the derived formula is consistent with the original one
when the data bubbles are spherical.

Intuitively, if two neighboring clusters merge together,
the density of the merged cluster will be expressed as

e

(v—la)ry/"('v—u): ¢

Fig. 13. The definition of extent in an oblique ellipse.

185

TABLE 4
Summary of Clustering Resuits of Different Measures
Datal | Data 2 | Data 3 | Data 4 | Data 5 | Data 6
Coheston | O 4] 6] [¢] O O
Cohesion™ | O [6) [0) X - X X
DO 6 [0 X X X X
D1 [9) [0) X X X X
D2 0 [¢] X X X X
D3 [¢] [¢] X X X X
D4 10 0O X X X X
Bubble | O [6) [6) X X X
E-Bubble { O [0) [e] 0] X X
Density ,- | O [0) [0) 0O X X
O is successful and X is failed, :
|Cil + le

C;.volume + C).volume.

However, the density drops if the two clusters are far away
from each other. Thus, we define a new similarity measure
as the ratio of expected density over the estimated density.

Definition 8. The density ratio of merging two clusters, C;
and Cj, is

1C:+|C;
Ci.volume+C,.volume

_ (Ci U C;) .volume
"~ (C;UC;).density C;.volume + Cj.volume’

 dd(Ci, Cy)

We also compare with the similarity measurement
defined in our prior work [21], where the joinability of two
clusters, C; and Cj, according the existence of a point p; in
Cluster C;, is defined as

| i — Gy~ P — G
jOin(Pia Ciw C]) = €xp <~ ﬂ"——c“l—;—‘ﬁ_——]—[> 3
where ¢; and ¢; are the centroids of the two clusters and r; is
the radius of cluster C;. We improve the definition of
joinability because it is observed that, once the distance from
the point to the two centroids is the same, the value of
joinability becomes one. Therefore, the value of cohesion
becomes large for two clusters that are far away from each
other with some noise points located. at the middle of the
two clusters. Although very rare, the occurrence of this
scenario is still deemed a defect and is thus remedied in this
paper. In addition, by using muitivariate normal distribu-
tion, the new definition of joinability is more powerful for
handling elliptic clusters. We denote the distance measure
defined in [21] as Cohesion™.

We replace cohesion with these similarity measures in
algorithm CSM and then apply it to the six data sets. The
clustering results are summarized in Table 4, where the
measure E-Bubble refers to the distance of elliptical data
bubbles. As shown, only cohesion can successfully partition
all the data sets. To fairly compare these similarity
measures, we perform this experiment 20 times. Each time,
we perform algorithm CSM with each similarity measure
and a unique random number so that the subclusters
generated in Phase 1 are identical for each measure. We use
the probability of successful clustering to judge the quality
of each similarity measure. The probabilities of some better
similarity measures are shown in Fig. 15. Note that the
success rates of these similarity measures on Data Set 1 and

78

158

v 44 . q 0
» ** . b3 .

L d
-
5 Jeee ! 4 s s tputnt
.nn‘o e ot e st - 4

(b)

(©)

Fig. 14. Some clustering resuits of different similarity measures. {a) DO on Data Set 3. (b) Bubble on Data Set 4. (c) Bubble on Data Set 5.
(d) E-Bubble on Data Set 6.) i

Data Set 2 are all 100 percent and, thus, are omitted in
Fig. 15. Some of those unsuccessful clustering results are
shown in Fig. 14.

4.2 Experiment ll: Comparing with Other Algorithms
We also apply -other clustering algorithms on those data
sets. The programs of algorithm BIRCH and DBScan are
obtained from public domain. The k-means, single-link, and
complete-link clustering algorithms are implemented as

ECohesion-
160 t3Density
% Bubble
80 B E-Bubble
) W Cohesion
&
> 60
a
-4
§ 40
3
o«
20
0

Data 4

Data3

Data 5 Data 6

Fig. 15. The probabilities of successfuily partitioned input data sets for
some similarity measures.

(d)

described in [19], [23], [27] using our best efforts. We also
implement the algorithm CURE with the outlier elimination
enhancement as described in [12]. For comparison reasons,
we have carefully chosen the parameters for each algorithm.
The clustering results are summarized in Table 5.

Some of unsuccessful clustering results are shown in
Fig. 16. Note that the single-link algorithm is equipped with
the outlier elimination enhancement as described in CURE.
Thus, it can successfully partition Data Set 4. Otherwise, it
will fail on all the data sets. In our observation, algorithm
CURE fails on Data Set 5 and Data Set 6 because some
clusters are in the shape of long stripes, while some noise
links exist between neighboring clusters. Recall that algo-
rithm CURE shrinks representatives toward the center of
the cluster to avoid the link-effects. However, the shrink

TABLE 5

Summary of Clustering Resuits of Different Algorithms
] Data 1 | Data 2 | Data-3 | Data 4 | Data 5 | Data 6

CSM 0 [0] 0 Q [¢) O
BIRCH| X X X X | X X
DBScan | O X X 0 0 X
CURE| © 8] 8] 0 X X
K-means [e] e X X X X
Single-Link | X X X 0 X X
Complete-Link [0} X X X X X

O is successful and X is failed.

£

157

(e)

U]

Fig. 16. Some clustering results of different algorithms. (a) Single Link on Data Set 5. (b) CURE on Data Set 6. (c) BIRCH on Data Set 1. (dy DBScan

on Data Set 3. () DBScan on Data Set 6. (f) DBScan on Data Set 6.

mechanism will cause those slender clusters to be split. On
the other hand, if we weaken the shrink mechanism, some
clusters will be merged by noise links. In Data Set 4,
algorithm CURE successfully finds a balanced shrink factor.
However, it fails to find one in Data Set 5 and 6. Algorithm
DBScan fails to find the five clusters in Data Set 2 because of
the variety of density of those clusters. It also fails in
Data Set 3 because there is a strong link between the upper
two clusters. Note that the largest cluster in Data Set 1 is
much sparser than the others. Thus, if we try to separate the
upper two clusters by increasing the values of ¢ and/or
MinPts, the other clusters will be merged with one another

and/or the largeét cluster will be regarded as noise. In Data
Set 6, algorithm DBScan also faces a dilemma. As shown in
Fig: 16e, it fails to separate two neighboring clusters linked

- by noise. If we try to separate them by increasing the values
.€ and/or MinPts, it will fail to identify the sparsest cluster,

as shown in Fig. 16e. Among these algorithms, only
algorithm CSM can obtain the correct clustering results.
Next, we conduct a scale-up experiment by applying
these clustering algorifhms on Data Set 3 of various sizes.
Since the time complexities of these algorithms are much
different from one another, we show the’ experimental
results in Fig. 17a and Fig. 17b. For comparison reasons, we

+3

158

8

' o
-« O - -DBScan -
il R S .
&
gilzo
=
=
2 80 ¢
a
2
d 40
0
20k 40k 60k 80k 100k
. Sizes of Data Sets
{=)

120 EEE T - compiete-link X
- - @ - - single-link .
80 - "0"DBSCQH ,"

=—{F—DBBuild

Execution Times (sec)
g

'S 4k 6k 8k 10k
. Sizes of Data Sets

)

Fig. 17. Scale up experiment on the sizes of input data sets. (a) Comparison of faster algorithms. (b) Comparison of slower algorithms.

(a)

(b)

Fig. 18. The clustering resqlts when m is too small or too large. (a) Small vaiue of paramater m (10). (b) Large vaiue of parameter m (256).

have tuned all the parameters so that the algorithm can be
executed as fast as possible while accruing acceptable
clustering qualities. For example, the value of parameter ¢

is 0.5 (the range of the Data Set 3 is 30 x 30), which is the -

smallest value that can successfully identify the four clusters
(recall that algorithm DBScan fails to separate the upper
two clusters). The value of parameter m in algorithm CSM
is chosen as 16 and the number of representatives in
algorithm CURE is chosen as 10. Note that the time
required by algorithm DBScan to build its search structure,
R*-Tree, is also shown in the figure and denoted as
DBBuild. Note that algorithm k-means and algorithm
CSM are both randomized algorithms, thus we show the
average execution times in these figures. As shown,
algorithm CSM is faster than most algorithms (except for
BIRCH and k-means) and scales linear to the size of input
data set.

4.3 Experiment ill: On the Number of Intermediate
Clusters

Finally, we conduct a sensitivity analysis on the value of
parameter m. It is observed. that, when the value of m is too
small, the subclusters produced in phase one may not
properly partition the input data set, as shown in Fig. 18a.
Thus, algorithm CSM results in an incorrect partition. On the
other hand, if we partition the input data set into toomany
subclusters, algorithm CSM may also fail to partition the
input data set due to two problems. The first problem is the
existence of many noise clusters. They will merge with other
clusters and affect the clustering resuits. The second problem

is those small clusters may form a link and connect two
neighboring clusters. As shown in Fig. 18b, the upper two
clusters are connected prior to the merging of the small
subcluster and the left upper cluster. The first problem may
be cured by our outlier resilience mechanism, while the
second problem is hard to prevent when m is too large.
Next, we conduct a scale-up experiment on the value of
parameter m. Specifically, we apply algorithm CSM on a
20k-point subset of Data Set 3 with different values of
parameter m. As shown in Fig. 19, algorithm CSM scales -
linear to the value of parameter m.

40 .

w
[=]
T

Execution Times (sec)
b 3

2 64 96 128 160
Values of Parameter n

Fig. 19. The scale-up experiment on the value of parameter m.

7

5 CoNcLusion

In this paper, we propose a new similarity measure,
cohesion, to measure the intercluster distances. By using
cohesion, we proposed a two-phase clustering algorithm,
CSM, whose time complexity is linear to the size of the
input data set. Combining the features of partitional and
hierarchical algorithms, algorithm CSM is able to not only
resist outliers, but also lead to good clustering results while
incurring a much shorter execution time than other
algorithms. The time and the space complexities of CSM
are also analyzed. As shown by our performance studies,
the cohesion-based clustering is very robust and possesses
excellent tolerance to outliers in various workloads. More
importantly, algorithm CSM is shown to be able to cluster
the data sets of arbitrary shapes very efficiently and to
provide better clustering results than those by prior
methods.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
their helpful comments to improve this paper. This work
was supported in part by the National Science Couricil of
Taiwan, RO.C,, under Contracts NSC93-2752-E-002-006-
PAE.

REFERENCES

[1] CC. Aggarwal, C. Procopiuc, J.L. Wolf, P.S. Yu, and J.-S. Park,
“Fast Algorithms for Projected Clustering,” Proc. ACM SIGMOD
'99, 1999. .

{2} KS. Beyer, . Goldstein, R. Ramakrishnan, and U. Shaft, “When Is
‘Nearest Neighbor’ Meaningful?” Proc, Int'l Conf. Database Theory
(ICDT '99), pp. 217-235, 1999,

{31 J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms. New York: Plenum Press, 1981.

[4] P.5. Bradley, K.P. Bennett, and A. Demiriz, “Constrained K-Means
Clustering,” Technical Report MSR-TR-2000-65, Mictosoft Re-
search, May 2000.)

[5] MM. Breunig, H.-P. Kriegel, P. Kroger, and]. Sander, “Data
Bubbles: Quality Preserving Performance Boosting for Hierarch-
ical Clustering,” Proc. ACM SIGMOD ‘01, vol. 30, no. 2, pp. 79-90,
2001.

" [6] A.G. Buchner and M. Mulvenna, “Discovery Internet Marketing
Intelligence through Online Analytical Web Usage Mining,” Proc.
ACM SIGMOD ‘98, vol. 27, no. 4, pp- 54-61, Dec. 1998.

{71 M.S.Chen,]. Han, and P.S. Yu, “Data Mining: An Overview from
Database Perspective,” IEEE Trans. Knowledge and Data Eng., vol. 5,
no. 1, pp- 866-883, Dec. 1996.

{8] AP. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Like-
lihood from Incomplete Data via the EM Algorithm,” . Royal
Statistical Soc. B, vol. 39, no. 1, pp. 1-38, 1977.

{91 R.C. Dubes, “How Many Clusters Are Best?—An Experiment,”
Pattern Recognition, vol. 20, no. 6, pp. 645-663, 1987.

{10}
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise.” Proc. Second Int'l Conf. Knowledge Discovery and Data
Mining, pp. 226-231, 1996.

U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurasamy,
Advances in Knowledge Discovery and Data Mining. Cambridge,
Mass.: MIT Press, 1996.

S. Guha, R. Rastogi, and K. Shim, “CURE: An Efficient Clustering
Algorithm for Large Databases,” Proc. Conf. Management of Data
(ACM SIGMOD 98), pp. 73-84, 1998. .

S. Guha, R. Rastogi, and K. Shim, “ROCK: A Robust Clustering
Algorithm for Categorical Attributes,” Proc: 15th Int'] Conf. Data
Eng., 1999.

J. Han and M. Kamber, Data Mining: Concepts and Technigues.
Morgan Kaufmann, 2000.

J. Hertz, A. Krogh, and R.G. Palmer, Introduction to the Theory of
Neural Computation. Reading, Mass.: Addison-Wesley, 1991.

{11

{12}

(13]

14
{15]

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based

159

(16] AK. Jain, MN. Murty, and PJ. Flynn, “Data Clustering: A
Review,” ACM Computer Surverys, vol. 31, no. 3, Sept. 1999.)
G. Karypis, E-H. Han, and V. Kumar, “Chameleon: Rierarchical
Clustering Using Dynamic Modeling,” Computer, vol. 32, no. 8,
pp- 68-75, Aug. 1999.

D.A. Keim and A. Hinneburg, “Clustering Techniques for the
Large Data Sets—from the Past to the Future,” Tutoria! Notes for
ACM SIGKDD 99, pp. 141-181, Aug, 1999 :
B. King, “Step-Wise Clustering Procedures,”]. Am. Statistical
Assoc., vol. 69, pp. 86-101, 1967. :
C-R. Lin and M.-S. Chen, “On the Optimal Clustering of
Sequential Data,” Proc. Second Int'l Conf. Data Mining, April 2002.
C.-R. Lin and M.-S. Chen, “Robust and Efficient Clustering
Algorithm Based on Cohesion Self-Merging,” Proc. Eighth Int'l
Conf. Knawledge Discovery and Data Mining (ACM SIGKDD ‘00),
Aug. 2002. :

S5.Y. Lu and KS. Fu, “A Sentence-to-Sentence Clustering Proce-
dure for Pattern Analysis,” IEEE Trans. Systems, Man, and
Cybernetics, vol. 8, pp. 381-389, 1978.

J. McQueen, “Some Methods for Classification and Analysis of
Multivariate Observations,” Proc. Fifth Berkeley Symp. Math.
Statistics and Probability, 1967.

N.M. Murty and G. Krishna, “A Hybrid Clustering Procedure for
Concentric and Chain-Like Clusters,” Intl J. Computer and
Information Sciences, vol. 10, no. 6, pp. 397-412, 1981.

R.T. Ng and J. Han, “Efficient and Effective Clustering Methods
for Spatial Data Mining,” Proc. 20th Int’l Conf. Very Large Daia
Bases (VLDB “94), 1994.

J.O. Pedersen, D.R. Cutting, D.R. Karger, and J.W. Tukey,
“Scatter/Gather: A Cluster-Based Approach to Browsing Large
Document Collectons,” Proc. 15th Int’] Conf. Research and Devel-
opment in Information Retrieval (ACM), pp. 318-329, 1992.

PH.A. Sneath and R.R. Sokal, Numerical Taxonomy. London:
Freeman, 1973. :
J. Tantrum, A. Murua, and W. Stuetzle, “Hierarchical Mcdel-
Based Clustering of Large Datasets through Fractionation and
Refractionation.” Proc. Eighth Int'l Conf. Knowledge Discovery and
Data Mining (ACM SIGKDD 02), Aug. 2002.

AKH. Tung, |. Han, L.V.S. Lakshmanan, and R.T. Ng, “Con-
straint-Based Clustering in Large Databases,” Proc. Int'] Conf.
Database Theory (ICDT '01), Jan. 2001.

C.-H. Yun, K.-T. Chuang, and M.-§ Chen, “An Efficient Clustering
Algorithm for Market Basket Data Based on Small-Large Ratios,”
Proc. 25th Int'l Conf. Computer Software and Applications, Oct. 2001.
T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient
Data Clustering Method for Very Large Databases,” Proc. Conf,
Management of Data (ACM SIGMOD °96), pp. 103-114, 1996.

(17
[1‘8]
(19
(201
(21]
{22]
(23]
[24]
{231
(26]
{27
(28]
(29]
(30}

B

24

