大葉大學九十學年度研究所碩士班招生考試試題紙							
系 所 組 別 考 試 科 目 考 試 日 期 備 註							註
工業工程(甲) 作業研究		4 月	22 日	第	2 節	P2	<u>-1</u>

註:考生可否攜帶計算機或其他資料作答,請在備註欄註明(如未註明,一律不准攜帶)

1. The starting and current tableau of a given problem are as shown. Find the values of the unknowns a through l.(24%) (請務必列出演算過程,否則不予計分)

Starting	Tableau:
----------	----------

Z	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	x ₅ RHS
1	а	1	-3	0	0 0
0	b	c	d	1	6
0	-1	2	e	0	1

Current Tableau:

${f Z}$	\mathbf{x}_1	\mathbf{x}_2	X ₃ X ₄	X ₅	RHS
1	0	-1/3	j k	l	-4
0	g	2/3	2/3 1/3	0	f
0	h	i	-1/3 1/3	1	3

2. The optimal Simplex tableau of formulation P1 is as follows:

$$Max: Z = 3x_1 + 2x_2$$

st

$$x_1 + 2x_2 \le 6$$

(P1)
$$2x_1 + x_2 \le 8$$

$$-x_1 + x_2 \le 1$$

$$x_1 x_2 \ge 0$$

Basic	x_1	x_2	x_3	χ_4	χ_5	x_6	Solution
Z	0	0	1/3	4/3	0	0	38/3
x_2	0	1	2/3	-1/3	0	0	4/3
x_1	1	0	-1/3	2/3	0	0	10/3
x_5	0	0	-1	1	1	0	3
x_6	0	0	-2/3	1/3	0	1	2/3

Answer the following questions using the concept of *sensitivity analysis*: (36%)

- (1) Would the optimal solution change if c_I (the objective coefficient for x_I) was changed from 3 to 4? Give the new optimal solution.
- (2) Give the new optimal solution if the supply of the second resource was increased by 2 units.
- (3) Give the new optimal solution if the right hand sides of constraints was changed to $(7, 4, 1, 2)^{T}$.
- (4) Give the new optimal solution if a new constraint, $x_1 \le 3$, was added to the model.

大葉大學九十學年度研究所碩士班招生考試試題紙 科 考 試 目 組 註 所 別 考 期 系 試 H 備 (中文名稱) 工業工程(甲) 作業研究 4月22日第2 P2-2

註:考生可否攜帶計算機或其他資料作答,請在備註欄註明(如未註明,一律不准攜帶)

3. Solve the following nonlinear integer programming problem using DP approach. What is the optimum solution if the RHS of constraint is changed from 5 to 7? (20%)

Max:
$$Z = (x_1 - 5)^2 + (x_2 + 2)^2 + x_3 x_4$$

st
$$x_1 + x_2 + x_3 + x_4 \le 5$$

$$x_i \text{ nonnegative integer}$$

4. 某公司針對未來 4 年編列研發預算,金額分別爲 1 千萬、1 千兩百萬、1 千兩百萬、及 1 千四百萬。現有 6 個研發計畫提案,各計畫每年之預估成本及計畫期望收益列示於下表。 由於預算有限,只能從 6 個研發計畫中挑出數個,以達成計畫期望總收益最大化之決策 目標。

單位:萬元

計畫	第一年	第二年	第三年	第四年	計畫期望收益
編號	預估成本	預估成本	預估成本	預估成本	
1	600	200	500	100	3000
2	300	200	100	200	780
3	300	400	200	400	2200
4	500	300	200	100	1200
5	300	200	600	100	1500
6	100	400	200	500	1300

各計畫間可能存在程度之依賴性(dependence)及互斥性(exclusiveness),例如計畫 5 及計畫 6 爲互斥的,換言之此二計畫不能共存;又計畫 2 不能單獨被選取,除非計畫 3 已被選取。試根據如上描述寫出一數學模式。(20%)