大葉大學九十學年度研究所碩士班招生考試試題紙											
系 所 組 別	考 試 科 目 (中文名稱)	考	試	日	期	備	註				
自動化工程學系 碩士班乙組	動力學	4月	22 日	第	二節	可使用 [·] p2·	計算機 - 1				

註:考生可否攜帶計算機或其他資料作答,請在備註欄註明(如未註明,一律不准攜帶) (各題目圖示見第二頁,每題 20 分)

(詳列計算步驟,否則一概不給分)

- 1. During a test an elevator is traveling upward at 15m/s shown Figure 1 and the hoisting cable is cut when it is 40 m from the ground. Determine the maximum height s_B reached by the elevator and its speed just before it hits the ground. During the entire time the elevator is in motion, it is subjected to a constant downward acceleration of 9.81 m/s^2 due to gravity. Neglect the effect of air resistance. (20%)
- 2. A box starts from rest at point A shown Figure 2 and travels along the horizontal conveyor. During the motion, the increase in speed is $a_t = (0.2t) m/s^2$, where t is in seconds. Determine the magnitude of its acceleration when it arrives at point B. (20%)
- 3. The motor M of the hoist operates with an efficiency of 0.85 shown Figure 3. Determine the power that must be supplied to the motor to lift the 375 N block C so that point P on the cable is being drawn in with an acceleration of 1.2 m/s^2 , and at the instant shown its speed is 0.6 m/s. Neglect the mass of the pulley and cable. (20%)

Figure 2 Horizontal conveyor

Figure 3 A Hoist

大葉大學九十學年度研究所碩士班招生考試試題紙										
系 所 組 別	考 試 科 目 (中文名稱)	考	試	日	期	備	註			
自動化工程學系 碩士班乙組	動力學	4 月	22 日	第	二節	可使用: p2 -	計算機 - 2			

- 4. The 10 kg block shown Figure 4 rests on the smooth incline. If the spring originally is unstretched, determine the total work done by all the forces acting on the block when a horizontal force P = 400 N pushes the block up the plane s = 2 m. (20%)
- 5. Determine the banking angle θ of the circular track shown Figure 5 so that the wheels of the sports car will not have to depend on friction to prevent the car from sliding either up or down the curve. The car has a negligible size and travels at a constant speed of 30 *m/s*. The radius of the track is 180 m. (20%)

