大葉大學九十學年度研究所碩士班招生考試試題紙									
系 所 組 別	考 試 科 目 (中文名稱)	考	試	日	期	備	註		
自動化工程學系甲組	控制工程	4 月	22 日	第	2 節	可攜帶· P2			

註:考生可否攜帶計算機或其他資料作答,請在備註欄註明(如未註明,一律不准攜帶)

1. Consider the feedback control system as shown bellow. (20%)

- (a) Find the transfer function $\frac{Y(s)}{R(s)}$. (5%)
- (b) Sketch the root-loci of the system for $k \ge 0$, including the breakaway points. (15%)
- 2. For a unity feedback control system with the plant (20%)

$$G(s) = \frac{10(s+0.1)}{s(s+1)(s^2+2s+100)}.$$

- (a) Sketch a Bode plot (magnitude and phase plots). (10%)
- (b) Would the system be stable? (10%)
- 3. Consider the feedback control system shown bellow. (20%)

- (a) If r(t) is unit step input, determine k so that the steady state error is 0.1. (10%)
- (b) Use the Routh-Hurwitz stability criterion to determine the range of k so that the feedback system is stable. (10%)

大葉大學九十學年度研究所碩士班招生考試試題紙

系 所 組 別	考 試 科 目 (中文名稱)	考	試日	期	備 註
自動化工程學系甲組	控制工程	4 月 2	2 日 第	2 節	可攜帶計算機 P2-2

註:考生可否攜帶計算機或其他資料作答,請在備註欄註明(如未註明,一律不准攜帶)

4. Consider the following digital control system. (20%)

- (a) Compute the transfer function $\frac{C(z)}{R(z)}$. (10%)
- (b) If T=0.1 sec and r(t) is a unit step input, find the steady state value, $c(\infty)$. (10%)
- 5. Given a transfer function (20%)

$$G(s) = \frac{Y(s)}{U(s)} = \frac{s+1}{s^2 + 2s + 2}$$

(a) Determine its state variable description

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t)$$

$$y(t) = \mathbf{C}\mathbf{x}(t)$$

in control canonical form. (10%)

(b) Let $u(t) = [k_1, k_2] \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, find the values of k_1 and k_2 so that the closed loop system

has damping rate $\xi = 0.5$ and nature frequency $\omega_n = 4$ rad/sec. (10%)