大葉大學九十學年度研究所碩士班招生考試試題紙			
系 所 組 別	考 試 科 目 (中文名稱)	考試日	期 備 註
食品工程學系 碩士班甲組	單元操作	4月22日第 〕	1 節 可攜計算機

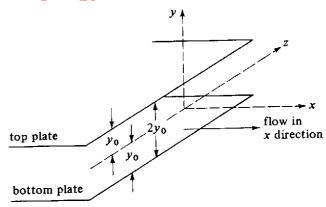
註:計算題需詳列算式,否則一律不予計分。

- 1. 簡答下列各題:
 - a. (5%) 試以雷諾數(Reynolds number)說明:流體中有那些性質會影響流動時的層流 (laminar flow)或亂流(turbulent flow)型態?其物理意義何在?
 - b. (5%) 熱傳共有哪三種機制?其原理為何?又,哪些機制在真空時不會發生?
 - c. (5%) 說明 Pitot tube 與 Venturi meter 的應用及其差異處?
 - d. (5%) 說明熱傳中的 Biot 數與 Nusselt 數的物理意義。7
 - e. (5%) 說明 momentum diffusivity, thermal diffusivity 與 molecular diffusivity 三者為 何與它們的類似性。
 - f. (5%) 氣體在管中擴散,當壓力變低時有所謂 Knudsen 擴散會發生。試說明在何種 情況下必須考慮 Knudsen 擴散。
- 2. (20%) Consider a double-pipe heat exchanger where the overall heat-transfer coefficient U is constant throughout the equipment and the heat capacity of each fluid is constant, the proper temperature driving force to use over the entire apparatus is the log mean temperature, *i.e.*,

$$\Delta T_{\rm lm} = \frac{\Delta T_2 - \Delta T_1}{\ln(\Delta T_2 / \Delta T_1)}$$

When crude oil flows at the rate of 2000 lb/hr through the inside pipe of the double-pipe heat exchanger and is heated from 90 to 200° F. The heat is supplied by kerosene, initially at 450°F, flowing through the annular space. If the temperature of approach (minimum temperature difference between fluids) is 20°F, **determine** the heat-transfer area **and** the required kerosene flow rate for (a) concurrent flow (*i.e.*, same direction when crude oil and kerosene through the heat exchanger) and (b) countercurrent flow.

Data: Overall coefficient $U = 80 \text{ Btu/(hr)(ft^2)(}^{\circ}\text{F}\text{)}$


Specific heat of crude oil = $0.56 \text{ Btu/(hr)(}^{\circ}\text{F}\text{)}$

Specific heat of kerosene = $0.60 \text{ Btu/(hr)(}^{\circ}\text{F}\text{)}$

- 3. (15%) In a process producting KNO₃ salt, 1000 kg/h of a feed solution containing 20 wt% KNO₃ is fed to an evaporator, which evaporates some water at 422 K to produce a 50 wt% KNO₃ solution. This is then fed to a crystallizer at 311 K, where crystals containing 96 wt% KNO₃ are removed. The saturated solution containing 37.5 wt% KNO₃ is recycled to the evaporator. **Calculate** the amount of recycle stream *R* in kg/h **and** product stream of crystals *P* in kg/h.
- 4. (15%) For continuous atmospheric gravity separator (see Figure), it has the depth h_{A1} and vent density ρ_A for heavy light liquid B feed overflow liquid A and depth h_B and density ρ_B for light liquid B ٤R liquid *B*. Show h_{A1} by h₄₂ h_{A2} , h_T , ρ_A and ρ_B . h_{Al} liquid A heavy liquid A overflow
- 5. (20%) Velocity profile (v_x) for a Newtonian fluid flowing in laminar flow in the *x* direction between two parallel plates at point far from the inlet or outlet of the channel as following.

$$v_x = v_{x \max} \left[1 - \left(\frac{y}{y_0} \right)^2 \right]$$

Derive the average velocity $(v_{x av})$ with $v_{x max}$ **as well as** the locations which v_x equals v_{av} . Note: $2y_0$ is the width between the plates, y is the distance from the center line.

