

1. Given
$$d\mathbf{x}/dt = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
, $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$. $\mathbf{A} = \begin{bmatrix} 0 & 3 & 1 \\ 2 & 8 & 1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 10 & \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
-10 -5 2

Use **Routh-Hurwitz** Stability Criterion to determine the **stability** of the system.

2. Given
$$d\mathbf{x}/dt = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
. $\mathbf{A} = \begin{bmatrix} -3 & -3 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Design a **state-feedback gain K** such that u(t)=-K*x(t) so that the **eigenvalues** of the closed-loop system are -2, -2, -2 \circ (10%)

- 3(a). Determine **Z-transform** of a sequence, f(k)=exp(-k), k>=0, and its **region of** convergence. (8%)
- 3(b). Find the **inverse Z-transform** of

z(2z+1)

3©. Find the **initial and final values of f(k)** if its Z-transform is

- 4. Given the block diagram of a discrete-time control system as follows, where ZOH is Zero-Order-Hold with its transfer function of $H_0(s)=(1-\exp(-Ts))/s \circ T$ is the sampling period.
 - (a). Find C(s)/R(s) when Ts = 1 sec. (8%)
 - (b). Discuss its stability.

s-domain	z-domain
1/s	$1/(1-z^{-1})$
1/(s+1)	$1/(1-z^{-1}e^{-T})$
$1/s^2$	$Tz^{-1}/(1-z^{-1})^2$

5. Use Mason's signal flow graph method to find C(s)/R(s).

(10%)

6. Given the block diagram and transfer functions: G(s)=10/[s(s+1)], H(s)=5, find **sensitivity** $S^{T(s)}_{G(s)}$ **and** $S^{T(s)}_{H(s)}$ respectively if T(s) is the closed-loop transfer function of the system when $\omega=1$ **rad/s**. (10%)

7. Given **Bode diagram** of a specified continuous-time control system, **find its**3rd order Transfer function. (10%)

共3頁第2頁

8. A plant with its transfer function as $G(s)=1/(s^2+3s+2)$. If we want to use a continuous-time PID(Proportional-Integral-Derivative) controller with its transfer function $D(s)=(s^2+6s+15)/s$ in cascaded with G(s), **draw its root locus clearly.** (10%)

共3頁第3頁

