
科學與工程技術期刊 第二卷 第四期 民國九十五年

Journal of Science and Engineering Technology, Vol. 2, No. 4, pp. 15-25 (2006)

15

Procedural Silhouette Edge Drawing

YU-CHEN HU and SHIH-KAI CHUNG

Graduate School of Multimedia and Animation Arts, National Taiwan University of Arts

59, Sec. 1, Daguan Rd., Banciao, Taipei County, Taiwan

ABSTRACT
In the development of computer graphics, non-photorealistic rendering (NPR) technology has

been a focus of research in recent years. In comparison with photo-realistic rendering which

simulates realistic natural images, NPR provides more concise and humanistic expressiveness in

images. Among the many types of workflow in NPR technology, the procedural type provides the

user an easier and simplified workflow. However, procedural NPR algorithms usually produce

uniform and non-humanistic images due to a lack of interaction with the user.

Since silhouettes are an important feature of edges for expressing the shape of an object, our

work takes silhouettes as examples to propose a stroke construction workflow based on edge topology

wherein users can combine pure stroke elements according to user-defined rules for their formation.

Thus, more humanistic expressions can be added to the resulting silhouettes. First, the procedural

NPR framework for stroke generation is outlined. Then, the mainstream NPR techniques and their

respective theorems are discussed, followed by an introduction to the framework and algorithm of the

proposed system and a discussion thereof. Finally, the feasibility of the proposed framework is

illustrated by a sample algorithm, after which pertinent research results are presented.

Key Words: non-photorealistic rendering (NPR), procedure, feature edge, silhouette edge, pure stroke

element, topology

程序性的輪廓線繪製方法

胡宇辰 鐘世凱

國立台灣藝術大學多媒體動畫藝術研究所

台北縣板橋市大觀路一段 59 號

摘 要

在電腦圖學的發展過程中，非寫實性算圖的技術在近幾年受到相當程度的重視。相較於寫

實性算圖以模擬真實的自然影像為目的，非寫實性算圖提供更為簡練、且更具人性化的圖像表

達方式。而在非寫實性算圖的操作流程中，程序性的操作方式雖然提供了使用者較為簡便的操

作流程。然而，由於程序性的演算流程中缺乏與使用者之間的互動，最終產生的影像仍不免會

有過於制式且缺乏人性化等缺點。

由於輪廓線是描述物體形體的重要特徵線，因此本論文將以輪廓線為例，提出一套以線條

拓樸為基礎的筆畫建構流程。透過使用者建立筆畫規則以組合基本筆畫單元，賦予輪廓線較具

人性化的表現方式。本文首先簡述程序性非寫實性算圖架構，接著文獻探討部分將針對已發表

之非寫實性算圖的基本演算原理以及非寫實性算圖中線條式樣逐一探討，然後詳述本論文所提

出的程序性非寫實性算圖架構與其演算法，最後並以實做及相關成果佐證論文的研究。

關鍵詞：非寫實性算圖，程序性，特徵線，輪廓線，單純筆畫單元，拓撲



Journal of Science and Engineering Technology, Vol. 2, No. 4, 2006

16

I. INTRODUCTION
Comparing with researches which work on simulating

realistic nature image, studies in the field of NPR provide

viewers better novel visual outlook on computer-generated

images. In recent years, researchers have developed

numerous theorems and algorithms to analyze and construct

relative visual elements, such as presentation of feature edges,

new shading methods, media simulation, and etc. Up to date,

most NPR technologies emphasis on the precise or realistic

simulation of visual elements, but leave out the important

creation segment which can make arts more humanistic. Take

researches in the field of line-drawing as examples, many

researches were devoted to solve the questions about “Which 

lines should be drawn” rather than “How to draw these lines”. 

In comparison with most published NPR works, this

paper will propose a more flexible framework, which can assist

users to establish appropriate stroke elements. For silhouette

drawing, the rule setting of line-drawing process is made as an

independent stage in this framework, thus provides the user a

flexible way to design different drawing styles. To better

show the capability and flexibility of our procedural

framework, a particle algorithm is embedded to create a variety

of drawing style, as the results of research achievement.

1. Motivation and Purpose

Although procedural NPR provides users a convenient

operation workflow, users can’t intervene the stroke description 

during the executing process. This will result in an

excessively stiff and humanistic-lacking rendering image. For

the visual representation to show perfect humanistic effect, a

procedural NPR framework can have various CG-related

research fields included. However, the resulted framework, in

general, has low executing efficiency due to the complexity.

In consideration of such a problem, our work provides lighter

and more flexible line-drawing constructing principles. Thus

users can develop suitable line-drawing module according to

this framework.

2. System Overview

Establishment of pure stroke elements and design of

paint stroke elements both are important processes which can

vitalize silhouette line-drawing. The system proposed by this

paper works mainly on extracting stroke element through

analyzing silhouette edges topology. By means of dissolving

and recombining polygon edges topology information, this

system establishes “pure stroke element” from the basic

silhouette edges geometry information. Then, these “pure 

stroke element” are linked to each other, according to the 

calligraphic style rules, to form the “paint stroke element”. 

Finally, this framework uses particle system, which can provide

rich and colorful visual effect, to process stroke style

simulation. Figure 1 shows the system workflow.

II. RELATED WORKS

1. Survey of NPR
In the history of computer graphics, rising and

flourishing on photo-realistic rendering (PR) algorithm

development has accomplished many astonishing visual effects.

No matter they are raytracing, radiosity, or other global

illumination methods, these algorithms have a common

purpose to simulate all kind of nature phenomenon or objects

realistically. Achievements can be seen in a variety of

application fields, especially in digital entertainment field, such

as games, TV commercials and movies. Since PR is able to

provide realistic image information, a basic question must raise

up: Why need to develop NPR technology? The answer

mainly comes from two aspects –structure representation and

visual representation.

A. Structure representation –PR can provide rich and realistic

image information. However, not all visual element

information of an image is required in all occasions.

Abundant image information sometimes implies a negative

meaning: Images can’t represent specific focuses, 

particularly these focuses are what users really needed.

Sometimes users persecute with rich image information, this

often occurs when users thirst for a concise and clear

structure information. For instance, structure expositions

in manual of common home electric appliances are usually

drawn in black lines with perspective. Clear illustration of

an object can make users better understand the structure of

object rather than using photorealistic image.

B. Visual representation –In the progress of art development,

human compose art creations with all kinds of medias and

achieve many great works. Today, computer can generate

very realistic images, development of algorithm on how to

simulate traditional paint skills has become an oncoming

tide. In addition to simulating traditional media, some

newly risen art fields also need NPR technology to simplify

production workflow. This is particularly true in the field

of traditional animation, and many researchers have

proposed all kinds of novel algorithms for cartoon shading.

According to different geometry structures, feature edges

can be summed up to three types [4]: silhouette, boundary and

Silhouette
Data

Pure
Stroke

Paint
Stroke

Particle
Simulation

Fig. 1. System workflow chart



YU-CHEN HU and SHIH-KAI CHUNG: Procedural Silhouette Edge Drawing

17

crease. Base upon model construction method (polygons or

spline surfaces) the definition of each feature edge type will

also be different. Since polygons are the basic element of

modeling and rendering, in this paper our system framework

will be implemented on polygon based models. Owing to the

view-dependent feature edge information is related to camera

parameters, this implies that since camera parameters have

different settings (this may be distance between object and
camera、camera’s FOV value or else), silhouette information 

may changes even extracting from the same object. Silhouette

data is different from fixed boundary and crease which are

view-independent. Silhouette edge data will change, as

camera or object moves. This property certainly drives many

feature edge algorithms to emphasize on silhouette data

processing [1, 9, 11, 13-15].

Many literatures have demonstrated that appropriate line

stroke can represent object’s inherent geometry structure [4].

In addition to geometry structure, other line properties such as

color and width can also supply fairly helpful information.

For example, visual effects can be conveyed by different line

width in three situations [5]: Line-drawing with the same line

width only conveys the construction on object itself; Enhancing

outline width can extract object from background; Different

width variation can construct perspective visual effect.

2. NPR Development Technology

Isenberg et al. [8] classify silhouette edge algorithms of

NPR technology into three categories: Image-space based

algorithms, object-space based algorithms and hybrid

algorithms. Image-space based algorithms exploit

image-buffer data as the main source information. These

algorithms extract discontinuous data which usually represent

the location where feature edges exist from the image-buffer.

Object-space based algorithm make use of all the information

obtained from 3D space as source information. Silhouette

edges detection and extraction are both executed in 3D space.

Different from image-space based algorithms and hybrid

algorithms, object-space based algorithms will not over rely on

information in image-buffer. Hybrid algorithms first use

object space data to modify object geometry appropriately, then

extract feature edges data from image-buffer. The purpose of

geometry modification is to stand out relative feature edges

data in image-buffer.

A. Literatures about image-space based NPR

Saito and Takahashi [16] address that profile (outline

silhouette) and internal edges (inner silhouette) can be

extracted by calculating first-order differential and

second-order differential of depth map. Discontinuous portion

of first-order differential calculation will reveal profile, and

discontinuous portion of second-order differential will show up

internal edge.

Deussen and Strothotte [3] provide another application

on depth map. They use basic primitives to represent leaf (for

instance, shape of disk), and calculate depth difference value

between adjacent pixels. If depth difference value exceeds a

certain threshold value, these pixels will be drawn. Just using

depth difference value (equal to zero-order differential

discontinuous calculation) will receive fairly good effect due to

the leaf is individual object. No demand for first-order or

second-order discontinuous calculation to find feature edges.

Hertzmann [7] suggests constructing normal map to

complement boundary and crease information which can’t be 

extracted from differential calculation of depth map. The

RGB value of each pixel in normal map corresponds to the

XYZ value of a normal vector. The main problem in depth

map technology is that depth map can’t calculate feature edges 

accurately if depth variation between polygons or objects are

not manifest. Thus it will need a normal map to supply

additional information to solve this problem.

B. Literatures about object-space based NPR

Although each type of feature edge has explicit geometry

definition, for object-space based NPR technology to examine

all edges one by one is very inefficient. Hence in the field of

object-space based NPR researchers put their efforts on how to

find out feature edges as fast as possible. Owing to silhouette

edges have view-dependent property, silhouette edge detection

naturally becomes the key point in this field.

Buchanan and Sousa [1] address edge buffer data

structure to accelerate silhouette edge detection. In order to

build up edge buffer data, initially each vertex must have a

unique vertex index, and for each edge two additional flags are

assigned: F flag (front-facing) and B flag (back-facing). After

simple Boolean evaluation F flag and B flag will be set, and

silhouette edge and boundary edge data can be obtained by

evaluating each edge’s F and B flag. The advantage of

Buchanan and Sousa’s edge buffer data structure is that it can 

fast sift out back-facing polygons which needn’t to be 

conveyed to rendering pipeline. However, this method has a

drawback that it can’t find out crease data automatically.

Extra artist flag must be assigned to edges manually to indicate

which edge should always be drawn.

Gooch et al. [5] provide a software assisted algorithm to

search for silhouette edges, by checking the projection region

on the Gauss sphere which is formed by the neighbor polygon

normal on each side of edge. If projection region intersects

with virtual view plane (a plane parallel to view plane and

passing through Gauss sphere center) then silhouette edge



Journal of Science and Engineering Technology, Vol. 2, No. 4, 2006

18

exists. Moreover, in order to speed up searching, Gooch et al.

store projection region data in a hierarchy sphere. Using

hierarchy sphere means representing sphere geometry in

different hierarchy. Octahedron or icosahedron may be used

as the initial geometry structure, and each next level sphere

geometry will split current level geometry triangle face to form

a finer sphere-like geometry.

Sander et al. [15] suggest an algorithm by combining

hierarchy search tree and anchored cone method to accelerate

silhouette edge searching. Construction of hierarchy search

tree data structure is similar to construction of Huffman tree by

manipulating “parent”, ”adopt” and “merge” operations 

between nodes. This is a bottom-up data construction method.

Anchored cone then defines a non-closed cone volume for each

node containing face cluster. Through setting a conservative

bound face clusters, pure front-facing or back-facing can be

determined. Sub-nodes testing is unnecessary if pure

front-facing or back-facing face clusters are found, hence this

method is helpful in economizing silhouette edge determination

time.

C. Literatures about hybrid NPR

Hybrid NPR technology with respect to object-space

based NPR technology has a critical difference: Hybrid NPR

technology don’t have feature edge detection. In other words,

edges on an object will not be classified to certain feature edge

type (silhouette, boundary or crease). Hybrid NPR algorithms

tend to operate on total [12] or easy chosen [13] polygons

rather than execute time-consuming feature detection

processing. The geometry structure will be modified to make

feature edge data more obvious in image-buffer.

Raskar and Cohen [13] observe that silhouette edges only

exist in first layer polygons (front-facing polygon) and second

layer polygons (back-facing polygon), and address two

methods to produce silhouette by modifying polygons of

object: First method is shifting back-facing polygon toward

camera with a certain distance. Depend on the dihedral angle

between front-facing and back-facing polygon, silhouette edges

with different width will appear. Second method is extending

edges of back-facing polygons outward. Enlarge the

back-facing polygons to be greater than front-facing polygons,

then silhouettes will appear. By appropriate parametric

control the second method can produce uniform width

silhouette strokes.

On account of the advantage that OpenGL is

hardware-supported, Gooch et al. [5] employ “PolygonOffset” 

function supplied by OpenGL (GL 1.1) to create silhouettes.

PolygonOffset function shifts polygons according to the slope

relative to near clip plane and far clip plane. Polygons with

large slope imply that depth offset is great, and result in local

discontinuous depth value. These portions are usually where

feature edges occur.

Raskar [12] operates different types of feature edge

creating process on all polygons without knowing what kind of

feature edge a polygon can produce first. For each polygon

Raskar judges whether it is front-facing polygon or back facing

polygon, if back-facing polygon then extends polygon to make

silhouette appear. For front-facing polygon two operations

will be applied to reveal crease (Raskar classifies crease as

ridge crease and valley crease; ridge crease is form by convex

polygons and valley crease is form by concave polygons), and

additional geometry structure (such as strip polygons) will let

creases emerge.

3. Style Line-Drawing Technology

Line-drawing styles usually are not directly related to

NPR technology type, even though different NPR technologies

may limit line-drawing style (for instance, stroke style can be

defined by user or not, stroke can be parameterized or not).

By rebuilding stroke process line-drawing may violate the

limitations caused by different NPR technologies being

selected. However, stroke rebuilding process can provide

additional advantage. This algorithm will not be embedded

into each NPR framework, owing to stroke rebuilding

technology has to consider style representation, and stroke

sorting also consume extra executing time.

Both image-space based NPR and hybrid NPR

technologies include stroke style representation inherently (this

is because both technologies contain image-space processing).

Without involving image-space, object-space based NPR

technology simply extracts feature edge data, and stroke style

representation will has a separate processing stage.

Line-drawing style of image-space based NPR technology

highly relies on the algorithm chosen to be operated on

image-buffer data. Because each pixel is dealt with the same

operation, the rendered image usually shows uniform

line-drawing style. This monotonous style is good for

structure representation but unfavorable to art representation.

Hybrid NPR technologies can modify object geometry structure

appropriately in object space, hence are able to produce more

artistic line-drawing styles.

Stroke rebuilding technology produces more flexible

visual representation. For NPR style animation algorithms,

stroke rebuilding is an important stage to maintain

frame-to-frame coherence [10]. In order to offer feature edges

with stroke style, two mainstream technologies are applied

currently: Skeleton Stroke Building System and Particle Stroke

Building System. Northrup and Markosian [11] provide a



YU-CHEN HU and SHIH-KAI CHUNG: Procedural Silhouette Edge Drawing

19

workflow of skeleton stroke construction. Basically it

constructs polygons along stroke edges, and after a series of

image-processing stage stroke style effect can be generated.

Particle Stroke Building System employs particle systems to

spread particles along stroke path. Curtis [2] calculates

“force-field image” according to the depth variation rate in 

depth map, and uses particle system to apply stroke style along

the force-field.

According to difference in purposes and operation

methods, different stroke style building strategies may be

accepted. For example, the purpose of using NPR technology

is for object structure representation or artistic creation? NPR

program executing need is real-time or not? Final production

is static image or animation? Different stroke style building

systems have different limitation and suitability: Over abundant

visual representation will obstruct structure information

conveyed by object. Real-time NPR operation have to

consider limitation on hardware, and animation production

must prevent confusing glitter problem. All these factors have

to be considered before designing a NPR algorithm.

III. INTEGRATE SILHOUETTE
INFORMATION

The framework we proposed has two main stages in the

workflow. The first stage is silhouette edge information

integration (including silhouette edge extraction, structured

silhouette edge, silhouette edge group construction and

silhouette edge filter process), and the second stage is stroke

style simulation. The purpose of the first stage is to create

clear and systematic silhouette edge information, hence this

stage will supply additional properties to silhouette edge in

order to provide more flexible algorithm designing strategy.

1. Silhouette Edge Extraction

The first stage of our framework is silhouette edge

extracting, and the purpose of this stage is to extract silhouette

edge from model with the methods derive from basic definition

of silhouette edge. Based on different NPR technologies a

variety of algorithms can be chosen in this stage.

A. Description

Before drawing up a framework of a NPR algorithm

designing case, designers must make sure the NPR technology

about to use first (image-space based NPR technology,

object-space based NPR technology or hybrid NPR

technology). This is because designers will have to face the

problem of silhouette edge extraction. A variety of algorithms

can be chosen based on individual NPR technology. No

matter which algorithm is chosen, basically in this stage

silhouette edge must be extracted, and each silhouette must

contain a unique edge index for identifying individual

silhouette edge. This index may be inherent from model

geometry data assigned by software, or properties supplied by

designers (for instance silhouette edges integrated in

image-buffer are assigned edge index by designers).

B. Algorithm analysis

In order to maintain the visual integrity of representation,

either silhouette edges or boundary edges will be extracted

following the convenience of algorithm design at the same

time. Since calculation of silhouette edge and boundary edge

can be put into practice with simple concept, a brute-force

algorithm will be chosen to extract silhouette and boundary

edges information in our system. For silhouette edge a

strategy will be supplied to determine whether it is shared by

front-facing polygon and back-facing polygon or not.

Judgment of boundary edge can be applied if an edge is not

shared by two polygons. Additionally, functions provided by

MaxScript can supply both side polygon information connected

to an edge (Figure 2).

2. Structured Silhouette Edge
After extracting silhouette edges from geometry model,

related information has to be integrated since a well-defined

data structure will help program framework to be more clear

and methodical.

A. Description

Except edge index information, extra information should

be obtained to realize connection condition of silhouette edges.

According to the API functions supplied by a variety of

software packages, additional information may be got by direct

calling functions, or designers will have to program an

algorithm to achieve this process. These extra information

will then be integrated as a compound data structure. In

addition to index of each edge itself, edge indices connected to

For each edge of an poly_object
{

find Edge_Polygons
If (number of Edge_Polygons equal to 1)

Edge is Boundary Edge
Else
{

N1 = Normalized Polygon1 Normal
N2 = Normalized Polygon2 Normal
V = Normalized View Direction
If ((Dot N1 V) * (Dot N 2V) < 0)

Edge is Silhoustte Edge
}

}

Fig. 2. Silhouette and boundary edge extraction



Journal of Science and Engineering Technology, Vol. 2, No. 4, 2006

20

current edge are recommended at least because recording of

neighbor edges indices can enhance edge’s connection sorting

time.

B. Algorithm analysis

Algorithms afterward will emphasize on silhouette edge

processing. Because boundary edges are simple closed loop

in general cases, and silhouette edges usually form complex

topology, relative analysis processes have to be executed until

paint stroke path construction. To the setting of silhouette

edge data structure, more additional properties will be included

practically. According to the afterward strategy chosen by

designers, different properties will be selected and their values

will be set in afterward process.

Except Edge_Index property which stores current edge

index, Side1_Connect_Edge_Index and Side2_Connect_Edge_

Index save edge indices that connect to the current edge in each

end-point. With Side1_Connect_Edge_Index and Side2_

Connect_Edge_Index specified silhouette connected to each

other can be found easily. Vertex1_Pos and Vertex2_Pos store

end-point vertex position in camera space coordinate.

Position information can be applied to curve construction

directly but in our system position data in camera coordinate

will be processed to get depth shifted position data.

Vertex1_ZShift_Pos, Vertex2_ZShift_Pos save the position of

vertex which is shifted to the same depth according to which

group it belongs to. Shifted position information will be

helpful in silhouette edge filtering process since silhouette edge

with great length may provide trivial visual effect in the final

presentation. Side1_Connect_Edge_Angle and Side2_

Connect_Edge_Angle will store the angle value with each side

of neighbor silhouette edge after shifted, because silhouette

edge link with sharp angle will be cut to form a more pure

geometry element.

3. Silhouette Edge Group Construction

With structured silhouette edge data constructed,

silhouette edges that connect to each other can be classified to

the same group. Later in silhouette edge filtering stage a

group will be taken as a basic processing element. Sorting

within the same group will be much faster than sorting overall

silhouette edges.

A. Description

According to the structured silhouette edge information,

silhouette edges connected to each other can be assigned to the

same group, thus each silhouette edge group is a non-broken

silhouette edge collection. The purpose of grouping is to

isolate disconnected silhouette information, and provides a

preliminary classifying on silhouette edge topology.

Furthermore, grouping will also make some silhouette edge

searching process more efficient (take group as a base element

to execute sorting and searching process).

B. Algorithm analysis

Silhouette edge grouping employs vertex index of the

current edge as the sorting index, and searches others with the

same vertex index on their side, thus silhouette edges

connected to each other will be assigned to the same group

(Figure 3).

4. Silhouette Edge Filtering

In order to simplify silhouette edge data, each silhouette

edge group will execute a filtering process. Filtering

processing not only reduces the silhouette edge data amount,

but also eliminates insignificant silhouette edges and makes

final constructing curve smoother.

A. Description

The filtering process treats each silhouette edge group as

a base element to choose appropriate silhouette edges. For

models with fine details this stage provides an obvious

advantage in reducing data amount. In addition, for

object-space based NPR technology, well designed algorithms

can moderate the appearance of sharp-tooth silhouette edge,

and this is helpful to construct clear silhouette strokes.

Silhouette edge filtering will modify silhouette edge geometry

information, thus this stage could be seen as an edge

reconstruction process.

B. Algorithm analysis

A more intuitive process of silhouette edge filtering will

be chosen in our system. Silhouette edges in the same group

will be shifted to the same depth with no position variation on

image plane (Figure 4), and shifted position will be stored

individually for later use. Actual model geometry will not be

modified, and shifted positions are obtained just by position

For each Struct_Silhouette_Edge(SSE)
{

Current_Vertex1_Index = SSE.Vertex1_Index
Current_Vertex2_Index = SSE.Vertex2_Index
For each SSE except itself
{

If ((SSE.Vertex1_Index = = Current_Vertex1_Index) or
(SSE.Vertex2_Index = = Current_Vertex2_Index))

{
Group Silhouette Edge
Del/mark grouped Silhouette Edge in SSE_Collection

}
}

}

Fig. 3. Pseudo-code of silhouette edge grouping



YU-CHEN HU and SHIH-KAI CHUNG: Procedural Silhouette Edge Drawing

21

For each Silhouette_Edge_Group
{

Find Max_Z_Depth
For each SSE in Silhouette_Edge_Group
{

Current_X = SSE.Vertex_Pos.X
Current_Y = SSE.Vertex_Pos.Y
Current_Z = SSE.Vertex_Pos.Z
Z_Offset = Max_Z_Depth –CurrentZ
Cur_Vector = Normalized[Cur_X, Cur_Y, Cur_Z]
XZ_Vector = Normalized[Cur_X, 0, Cur_Z]
YZ_Vector = Normalized[0, Cur_Y, Cur_Z]
X_angle = Acos (Dot YZ_Vector Curt_Vector)
Y_angle = Acos (Dot XZ_Vector Cur_Vector)
X_Offset = Z_Offset * Tan (X_Angle)
Y_Offset = Z_Offset * Tan (Y_Angle)

}
}

Fig. 4. Vertices on silhouette edge shift to the same depth

value calculation.

For silhouette edge length information, 3D space

represents totally different meanings from 2D image space.

Owing to the final result is a 2D image, a viewpoint from

image space has to be concerned to make filtering process more

accurate. Practical coding in our system is filtering silhouette

based on a length threshold value set by designers, discarding

silhouette edges which are under threshold value, and

re-connecting neighbor silhouette edges (Figure 5).

IV. STROKE STYLE REPRESENTATION
Stroke style simulation is the second stage of the

framework. The processes include pure stroke data structure,

analyze pure stroke, paint stroke data structure, and particle

system simulation. Integrated silhouette edge information can

be categorized to four kinds of pure stroke types. According

to the rules of calligraphic style, pure stroke will be organized

in turn in order to construct paint stroke. Finally particle

system will be applied to simulate media effect. Particle

system supplies a sufficient flexible properties to represent

visual effect and physical phenomenon of media. This is the

reason that particle system simulation is an independent

processing stage in the framework.

Fig. 5. Silhouette edge filtering

1. Pure Stroke Data Structure

For stroke style representation our method analyzes each

silhouette edge group to obtain basic stroke elements according

to specific silhouette edge connecting condition. Later these

basic stroke elements will be organized based on stroke

painting order to form a more integrated line-drawing

construction.

A. Description

Pure strokes can be concluded in terms of silhouette edge

topology, and deemed as base stroke elements. Each pure

stroke includes three properties:

1. Pure stroke is a single path stroke.

2. No self-intersection will occur to pure stroke except looped

pure stroke.

3. Sharp angle will not be found in pure stroke.

 According to pure stroke’s properties, four types of 

connection situation of pure stroke’s two-side vertex can be
categorized：

1. S Type:Vertex doesn’t connect to other pure strokes (Figure 

6(a)).

2. A Type: Vertex connected to another pure stroke with a

sharp angle (Figure 6(b)).

3. C Type: Vertex connected to multiple pure strokes (Figure

6(c)).

4. L Type: A pure stroke connected to its self (Figure 6(d)).

A pure stroke analysis example is presented in Figure 7.

(a) (b)

(c) (d)

Fig. 6. Four types of connection situation of pure stroke

Fig. 7. A pure stroke analysis example



Journal of Science and Engineering Technology, Vol. 2, No. 4, 2006

22

Data structure of pure stroke at least includes: current

pure stroke’s type, silhouette edge information contained in 

current pure stroke, and pure stroke information connected to

each side of current pure stroke. Calligraphic style

representation will be different for individual pure stroke type,

such as a SS type stroke will be thin in the beginning and

ending portion, thus current pure stroke’s type have to be 

recorded. Silhouette edge information contains vertex

position and angles of each connected silhouette, and this

information will be used in later stage for curve construction.

For fur referencing total silhouette edge information contained

in current pure stroke should be included. Finally, adjacent

connected pure stroke index will be recorded for faster sorting.

B. Algorithm analysis

Before constructing pure stroke data structure, each

silhouette edge group has to be divided as pure stroke. Based

on pure stroke connection situation, compound types of A, S, C

(AA, SS, CC, AS, SA, AC, CA, SC, CS) and LL type can be

classified (Figure 8). When pure stroke type and silhouette

edges included by a pure stroke are confirmed, relative

silhouette edge data will be integrated to the newly constructed

pure edge data structure.

2. Analyze Pure Stroke
After obtaining basic stroke elements, the factor of

stroke’s trend has to be concerned to connect all basic stroke 

element links. In analyzing pure stroke stage algorithms will

be applied to join pure strokes in certain order, just as

simulating painters’ drawing strokes in order.

A. Description

This stage sets rules of calligraphy style. Pure strokes

will be connected to each other according to rules provided by

For each Pure_Stroke in Silhouette_Edge_Group
{

For each connect side of Pure_stroke do
{ //SCPS=Side_Connect_PureStroke

If (Pure_Stroke.SCPS_Index_Count = = 0)
Add PureStroke_ PureStroke_Type “S”

Else if (Pure_Stroke. SCPS_Index_Count > 1)
Add PureStroke_ PureStroke_Type “C”

Else if (Pure_Stroke. SCPS_Index_Count = = 1)
{

If (Pure_Stroke.Vertex1_ZShift_Pos = =
Pure_Stroke.Vertex_ZShift_Pos)
Add PureStroke_ PureStroke_Type “L”

If (Pure_Stroke.SCPS_Angle >
Threshhold_Angle)
Add PureStroke_ PureStroke_Type “A”

}
}

}

Fig. 8. Pure stroke classify process

designers to form painting stroke. Owing to strokes have

direction, linking of pure strokes must take directional property

into account.

B. Algorithm analysis

Construction of calligraphy style rules relies on

researching of many kinds of media properties and art styles.

A simpler algorithm is supplied to connect pure strokes

hierarchically (Figure 9). To construct a hierarchical

connecting stroke a main stroke has to be found first. Pure

strokes intersect with main stroke are defined as level 1 stroke.

Strokes connect with level 1 will be sorted out to define level 2

stroke and so on (Figure 10). Each pure stroke intersects with

current level pure stroke will be defined as next level pure

stroke, and this will form a stroke structure distributed as a tree

structure.

3. Paint Stroke Data Structure

 Since pure strokes’ link orders have been decided, the 

next step is to organize pure stroke links into a more integrated

data type - paint stroke. Paint stroke data structure contains

the information for curve construction. It also can contain the

parameters about stroke style representation if no additional

stage is responsible for it.

A. Description

Final data structure can include stroke style information,

thus paint stroke data structure is addressed to contain geometry

For each Silhouette_Group
{

Collect all Pure_Stroke
Find the longest pure stroke
Remove chosen pure stroke
While (PureStroke_Count != 0)
{

Trace Next_Level_Path if “C”type
Remove chosen pure stroke

}
}

Fig. 9. Hierarchical stroke construction

Fig. 10. Hierarchical stroke structure



YU-CHEN HU and SHIH-KAI CHUNG: Procedural Silhouette Edge Drawing

23

information of stroke path and relative stroke style parameters.

Paint stroke data structure is provided to supply a final

integrated data structure. Stroke style effect established based

on skeletal stroke building system is recommended to

accomplish skeletal stroke polygon construction, and effect

produced by particle system is suggested to complete stroke

path curve construction.

B. Algorithm analysis

Algorithm provided in this stage emphasizes on

obtaining usable information for stroke path curve construction.

Spline construction in MaxScript only needs vertex position

information, thus in practical algorithm designing vertex

position of hierarchical pure stroke will be extracted in order,

and integrated in a simple data structure. Paint stroke data

structure which contains stroke style controlling properties has

been described, but owing to particle system supplies more

extensively control ability over stroke style, practical algorithm

designed based on particle stroke building system can integrate

stroke style controlled with particle system.

4. Particle System Simulation
To get various visual effects, particle system will be

applied in the final stage in our framework. Since particle

system possesses complex and flexible tuning ability, this will

be helpful in assisting artist’s creativity. 

A. Description

Advantage of particle stroke building system is that

particle system can provide simulation of physical

phenomenon, and media reality can be improved by setting

corresponding particle system parameters. Representation of

media appearance can be achieved by assigning pre-produced

texture map or procedural texture to particles.

B. Algorithm analysis

Many software packages have provided practical particle

system tools, our algorithm only needs several basic parameters

to test stroke style appearance: particle size, grow and fade

speed of particle, and random size variation etc. In practical

operation a Particle Flow tool supplied in 3DS Max 6 is used

for stroke style testing (Figure 11 (a), (b), (c), (d)).

V. RESEARCH RESULTS
Strokes can represent a variety of styles with textures no

matter texture maps are pre-produced by users or created by

procedural method provided by available software packages.

If textures are made by a procedural processing, then the

procedural texture creating process can be integrated into

procedural stroke construction scheme. For testing purpose a

procedural texture called “Dent” supplied by 3DS Max is 

(a) Default setting (b) With a small size parameter

(c) With a fade/grow parameter (d) With a random size parameter

Fig. 11. Variation of stroke style with various parameter

setting

chosen (Dent texture generates the effect just like noise does).

In this section relative research results will be displayed to

show that stroke styles and calligraphic styles can still be

maintained in the procedural line-drawing process.

First exhibition is the teapot model. Figure 12(a) is the

original model. In practical design a simple user interface

contains two relative parameters about particle system: particle

size and particle birth rate. Few parameter controls are

provided owing to the complex particle effects will disturb

observation of stroke style and calligraphic style variations.

Figure 12(b) represents the default setting of relative

parameters, and Figure 12(c), (d), (e) display the effect of

operating modification on particle size and particle birth rate

parameter individually. Altering particle size parameter can

influence stroke width, and modifying particle birth rate has

apparent change in stroke density.

(a) The original tea model (b) Default parameter setting

(c) Modify particle size (d) Modify particle birth rate

(e) Increase birth rate

Fig. 12. Experiment results with teapot model



Journal of Science and Engineering Technology, Vol. 2, No. 4, 2006

24

In the process of testing, an open boundary model is

chosen to test whether the extracting process of boundary edges

in practical algorithm works correctly. A mask model with

many boundaries is selected (Figure 13(a)). With particle

effects, pleased stroke style representation is appeared

especially around the jaw of mask (Figure 13(b), (c)).

Abundant visual effect can be presented with all kinds of

texture map applied to particles. The final visual

representation of line-drawing style greatly relies on tuning of

particle system parameters and selection of texture map applied

to the particles (Figure 13(d), (e), (f)).

Presentation of a series of images (Figure 14) describes

the order of stroke painting. Each stroke’s painting timing can 

be integrated into “Paint stroke data structure” to form a line 

drawing animation with specific order that is influenced by the

algorithm designed in the “Analyze Pure Stroke” stage of our 

framework.

VI. CONCLUSIONS AND FUTURE WORK

1. Conclusions
For line drawing process in procedural NPR algorithms,

besides emphasizing on line information accuracy and realistic

imitation of media effect, in recent years researchers in the field

of NPR prefer to think from the artist’s point of view, and try to 

get new inspiration from the process of art creation behavior.

This tendency also implies that accurate edge information and

reality of media simulation still can’t redeem the lack of

(a) Mask model (b) Default setting

(c) Particle size up, birth rate down (d) General style

(e) Dot line-drawing (f) Snow line-drawing

Fig. 13. Experiment results with an open boundary (mask)

model

Fig. 14. Process of ordered line-drawing

humanistic representation of computer-generated images.

This paper proposes an open structure to attach importance to

this problem: For procedural NPR technologies with

humanistic representation an algorithm must be constructed

independently in the framework corresponding to the art

creation behavior. Therefore the framework addressed by this

paper makes the process of converting pure stroke to painter’s 

stroke a stand alone stage. In the meanwhile, this framework

also supplies definitions of pure stroke. This provides

designers a basic element when establishing stroke style or

calligraphic style algorithm.

Invention of pure stroke not only contributes to still NPR

line drawing technology, but also is helpful in NPR animation

algorithm development. In many situations silhouette edges

connected to each other in 3D space are belong to the same

object. Categorizing these silhouette edges to pure stroke as a

basic element can improve time-consuming silhouette edge

sorting process. Determination of coherence of line visibility

can be speeded up if pure strokes are taken as a basic

determination element [16]. Anyhow, pure strokes can

provide more different thought to line drawing technology

design.

2. Future Work

Examining our framework, there are four main stages to

make NPR line drawing algorithm with different effects:

algorithms of silhouette edge extraction, silhouette edge

filtering, calligraphy construction and media simulation.

Among these stages many researches have devoted to

accurately represent information in silhouette edge extracting

process and reality of media simulation. But methods to

reduce silhouette edge information and ways to establish

calligraphy style so far don’t have much persuasive 

development. Practical algorithms in our system only design

with simple thought. Silhouette edge filtering and calligraphy

style establishing still need some further study. Especially

calligraphy styles are different to each other according to a



YU-CHEN HU and SHIH-KAI CHUNG: Procedural Silhouette Edge Drawing

25

variety of media, tools and personal style. It is almost

impossible to create a general purpose algorithms, particularly

each person has individual drawing habit, not to mention that

limitations in specific media or drawing style will strangle

freedom of artist’s creation. How to provide artists a

convenient and simple user interface to establish calligraphy

style or stroke style rules, and convey these rules to an general

purpose framework to produce a unique line drawing

procedure, is a new direction for NPR’s future development.

REFERENCES
1. Buchanan, J. W. and M. C. Sousa (2000) The edge buffer:

A data structure for easy silhouette rendering. Proceedings

of 1st International Symposium on Non-Photorealistic

Animation and Rendering, Annecy, France.

2. Curtis, C. (1998) Loose and sketchy animation.

SIGGRAPH Conference Abstracts and Applications,

Orlando, FL.

3. Deussen, O. and T. Strothotte (2000) Computer-generated

pen-and-ink illustration of trees. Computer Graphics,

34(4), 13-18.

4. Gooch, B. and A. Gooch (2001) Non-Photorealistic

Rendering, AK Peters, Natick, MA.

5. Gooch, B., P. P. J. Sloan, A. Gooch, P. Shirley and R.

Riesenfeld (1999) Interactive technical illustration.

Proceedings of Symposium on Interactive 3D Graphics,

Atlanta, GA.

6. Grabli, S., E. Turquin, F. Durand and F. Sillion (2004)

Programmable style for NPR line drawing. Proceedings of

EUROGRAPHICS Symposium on Rendering Techniques,

Norrköping, Sweden.

7. Hertzmann, A. (1999) Introduction to 3D

non-photorealistic rendering: Silhouettes and outlines.

SIGGRAPH Course Notes, Los Angeles, CA.

8. Isenberg, T., B. Freudenberg, N. Halper, S. Schlechtweg

and T. Strotthotte (2003) A developer's guide to silhouette

algorithms for polygonal models. Proceedings of IEEE

Computer Graphics and Applications, 23(4), 28-37.

9. Markosian, L, M. A. Kowalski, S. J. Trychin, L. D.

Bourdev, D. Goldstein and J. Hughes (1997) Real-time

nonphotorealistic rendering. Computer Graphics, 31(4),

415-420.

10. Masuch, M., L. Schuhmann and S. Schlechtweg (1998)

Frame-to-frame coherent line drawing for illustrated

purposes. Proceedings of Simulation and Visualization,

SCS Europe, Magdeburg, Germany.

11. Northrup, J. D. and L. Markosian (2000) Artistic

silhouettes: A hybrid approach. Proceedings of First

International Symposium on Non-Photorealistic Animation

and Rendering, Annecy, France.

12. Raskar, R. (2001) Hardware support for non-photorealistic

rendering. Proceedings of SIGGRAPH /

EUROGRAPHICS Symposium on Graphics Hardware,

Los Angeles, CA.

13. Raskar, R. and M. Cohen (1999) Image precision

silhouette edges. Proceedings of Symposium on Interactive

3D Graphics, Atlanta, GA.

14. Rossignac, J. and M. Emmerik (1992) Hidden contours on

a framebuffer. Proceedings of the 7th Workshop on

Computer Graphics Hardware, Eurographics, Cambridge,

England.

15. Sander, P. V., X. Gu, S. J. Gortler, H. Hoppe and J. Snyder

(2000) Silhouette clipping. Computer Graphics, 34(4),

327-334.

16. Saito, T. and T. Takahashi (1990) Comprehensible

rendering of 3-D shapes. Computer Graphics, 24(4),

197-206.

收件：94.12.16 修正：95.02.24 接受：95.04.14


