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ABSTRACT

In this study, branch correlation coefficient characterized by correlated Nakagami-m

distribution is investigated for non-coherent M-ary FSK (frequency shift keying). Some new

equations, including one for the parabolic cylinder function, are derived. The transmission channels

for a wireless radio system are assumed to be frequency non-selective fading channels. Numerical

analysis methods are applied to validate the effect of branch correlations with application of the new

equations. The results confirm that the branch correlation parameter is not negligible when

designing communication systems.
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研究具相關性統計環境中 M-ary 非同調調變方式的

分支相關特性
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摘 要

本文旨在研究非同調（non-coherent）M-ary 頻率鍵移（frequency shift keying, FSK）調變系

統的分支相關係數，其中相關環境假設係處於由相關 Nakami-m 統計分布所定性的分支相關環

境中。本文推導了一些包含 parabolic cylinder 函數的新方程式，至於傳輸通道是考慮為非選頻

性（frequency non-selective）的衰落通道。本研究中並透過數值分析的方法以確認新方程式中

的分支相關效應。

關鍵詞：頻率鍵移，相關係數，相關 Nakagami-m 通道
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I. INTRODUCTION
The requirement of high data rates, wide bandwidth and

much more capacity becomes the basic conditions for the fast

developing wireless communication systems. It is known that

the 3G (3rd generation) wireless radio systems have landed the

market and it is with the multiple access schemes, which apply

the spread spectrum techniques, including the CDMA

(code-division multiple-access) and the so-called fast FH

(frequency hopping). Especially, due to the much fast speed

of transmission rate of the spread spectrum technique, it is the

most important one adopted in the area of military. On the

other hand, we know the fact that the noncoherent modulation

schemes applied in the wireless communication environments

are the NFSK (noncoherent frequency shift keying, NFSK)

scheme. For the purpose of requirement for high transmission

data rate, the NFSK and DPSK are the most two important

modulation techniques for multiple-access systems. It is well

known that the correlation characteristic happens between the

branches in correlated-fading channels. The main aim of the

paper focuses on the branch correlation for M-ary noncoherent

FSK and DPSK modulation schemes. In this paper, the

impact of correlation on the performance of M-ary noncoherent

modulator, MFSK, in the correlated Nakagami fading channel

is evaluated. For a long time, many of the important studies

have employed the Rayleigh distribution to characterize the

envelope of fading signals. However, Nakagami-m

distribution has been thoroughly investigated, since it has been

verified as a more versatile model for a variety of fading

environments such as urban and suburban radio multipath

channels for wireless communication systems [7]. Recently,

Lombardo et al. [6] derived an exact expression for the

performance of BPSK and NCFSK with prediction MRC

(maximal ratio combining) in correlated Nakagami channels.

Zhang [11] derived the exact BER expression for BPSK and

BFSK systems with MRC over correlated Nakagami-m

channels. Proakis [9] has studied in MFSK modulation

scheme works in the environments with the Rayleigh fading

channels. In [10], the authors calculated the BER

performance with Chi-square parameters. The performance

comparison with encoded (coded) and uncoded for M-ary FSK

working in Nakagami-m fading statistic was investigated by

crepeau [3]. In [2], where the authors analyzed the

performance of multiple-cell DS-CDMA systems over

correlated Nakagami-m fading environments.

In this paper, The BER performance for both encoded

and uncoded coding techniques with MFSK modulation

operating in Nakagami-m fading channel are studied. This

paper is organized as follows. In Section II, the system

models of uncoded noncoherent modulation are presented.

The system performance is analyzed in Section III, in which the

BER performance for MFSK is determined for uncoded and

coded cases, respectively. The numerical results are

illustrated in Section IV. A briefly conclusion is drawn in

Section V.

II. SYSTEM MODEL OF UNCODED
NONCOHERENT MODULATION

In wireless communication systems, both Rayleigh and

Rician fading models are widely studied, in particular, in urban

environments. In this section, the channel model of

noncoherent MFSK modulation system is characterized by the

correlated Nakagami-m statistics distribution, and assumes that

the received signal at the receiver output in the interval [0,T]

can be expressed as

)()cos(/2)( tntTERtr is  (1)

where ES is the normalized average received symbol energy,

n(t) is AWGN with one-sided power spectral density N0, is

uniformly distributed in [0,2], i denotes one of the M

orthogonally spaced frequencies, and R expresses a random

variable with Nakagami-m distribution whose pdf (probability

density function) is given by [7]
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where =E[R2], which represents the average power of the

signal, E[·] is the expectation operator, and m=E2[R2]/var[R2] is

defined as the ratio of moments, which is called the fading

figure. By setting m=1, the equation (2) can be reduced to a

Rayleigh statistic. For values of m in the range 1
2
1

m ,

the pdf has larger percentage tail than a Rayleigh-distribution.

If the values of fading figure is greater than one, m >1, the tail

of the pdf reduces faster than that of the Rayleigh distribution

environments. Assuming that the branches of transmission

channel are perfect estimated for MRC diversity is necessary.

The pdf of the SNR at the output of an MRC receiver with

Rayleigh distributed channel estimation errors has been derived

by Gans [5], and is written as
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where is called as correlation coefficient, and [0,1], is a

parameter used for estimation the value between each branch,

and L denotes the number of branches. The equation (3) can

be applied in the calculation of system performance for the

M-ary modulation operating in the correlated fading channels.

In fact, correlation coefficient, , represents the channel

characteristic used to estimate the affect of the Doppler shift.

It represents the perfect branch combination for MRC diversity

when =1. As the values of decreases gradually, and the

analyzed system performance will also be reduced. By

substituting =0 in the extreme conditions, decline estimation

and its actual value are totally independent, and the

performance is going not superior as the one that considers the

parameters of correlation coefficient between branches for the

same system.

III. SYSTEM PERFORMANCE ANALYSIS
The BER performance is calculated for uncoded and

coded coding, and an example for the coded case with Golary

coded scheme is presented in this section.

1. The Uncoded Case

The wireless communication system works in the slowly

non-selective fading channel is supposed in this study.

However, no loss of the generality, the normalized value of the

average power is adopted, that is, =1, and the energy received

at the output of the receiver can be written as R2ES, where Es

denotes the symbol energy. For the reason mentioned above,

the pdf shown in (3) can be reduced and becomes as
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By means of the same approaches adopted in [1], the

average SEP (symbol error probability) can be determined by

averaging over the conditional symbol error probability under

the assumption of correlated Nakagani-m fading distributed.

Hence, the SEP of the general case for MFSK schemes can be

obtained as
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where p(R) is shown in (4). In order to calculate the BER

performance for MFSK, the bit energy can be expressed as

Eb=ESlog2M, the BER can be obtained from (5), and can be

expressed as
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By substituting (3) into (5) and (6), after some algebra

operations, the BER for FSK over correlated-Nakagani-m

statistics can be obtained as (see the Appendix)
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where (·) is the Gamma function, D-V(·) is the parabolic

cylinder function [4]. The validation of accuracy for (7) will

be illustrated in Section IV with numerical analysis method.

2. The Coded Case

For the purpose of extending the analysis of the system

performance to an M-ary radio system, the coded system is

focused on the discussion of the linear binary block scheme.

The BER performance of a binary block coded method is given

as [8]
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where n is the necessary distance for coding, i is the average

error number reserved for correcting codeword which allows i

errors, and t expresses the ability of error correction which can
be taken as   2/1 dt , and d denotes the minimum

distance. However, the BER performance of MFSK with

coded case can be determined by substituting the BER formula

for uncoded shown in (7) into last equation, the Eb will be

replaced by rcEb, where rc denotes the coding rate of the coded

MFSK. There is a special case, for example, the extended

Golay code is chosen as (24, 12). The decision mentioned

above is not the best fit for this case, but it can illustrate the

features of the coded MFSK. The expand Golay codes shown

in [8] are set as 4=4, 5=8, 6=120/19,…, 24=24, etc. In
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order to maintain the assumption of channel is propagating over

memoryless BSC (binary symmetric channel), the perfect bit

interleaving for coding technique were adopted in this

evaluation of the MFSK with coded case. For the situation of

high Eb/N0, which will be kept in the variant condition and the

BER Pb shown in (9) will be employed as inverse to power of

the m(t+1)-th branch. Meanwhile, there is a simple

multiplication for m(t+1) and the fundamental channel

integrated into a key code parameter. The accuracy of the

BER performance for the MFSK coded case can be validated

by comparing the results derived in (9) with the researched

publication with the measurement data shown in [8].

IV. NUMERICAL RESULTS
In this section, the BER performance of MPSK is

analyzed by the numerical method with the Matlab package

Fig. 1 and Fig. 2 illustrate the BER versus the SNR results for

MFSK working in uncoded case with correlation coefficient

=0.5 and 0.9, respectively. It is known that the system BER

performance for MFSK in uncoded case will become

degradation when the branch number is increase. On the other

hand, the BER performance variate with the characteristic of

correlation between difference branches is shown in Figs. 3-4,

where the correlation coefficient are set as =0.1, 0.3, 0.5, 0.7

and 0.9. It can be easily understood that the performance is

definitely degraded by the correlation coefficients, that is, the

greater in , the better in system performance. The

performance of coded MFSK is discussed bellows. Fig. 5 and

Fig. 6 show the BER versus to the SNR for the case of coded

MFSK with the branch number L=2, 4, 8, 16, and, =0.5 and

=0.9, respectively. The fact is same that the results shown

for the uncoded MFSK case, that is, the BER performance

depends on the branch number. The conditions assumed with

branch numbers L=2, 8, and different correlation coefficients

are expressed in Figs. 7-8, respectively. It is worthy to note

that the trend of evaluated results of the coded cases shown in

Figs. 7-8 are similar to the results illustrated in Figs. 3-4.

V. CONCLUSION
In this paper, the BER performance of coded and

uncoded MFSK working in the correlated Nakagami-m fading

channel is analyzed with different branch correlation

coefficients. A new expression of BER performance with the

parabolic cylinder function for the M-ary noncoherent

modulation is derived. Some numerical results show the

branch number and the correlation coefficient between the

branches affect the system performance for the wireless radio

system.
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Fig. 6. The BER vs SNR performance of coded MFSK with

coefficient correlation =0.9
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APPENDIX
In this appendix, the equation (7) was derived. It is known that the pdf of the fading amplitude is given as
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The average power was normalized as =1, then the symbol error rate be calculated as
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Some of the conditions are assumed as follows, the average power is assumed as =1, and changing variable with
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By means of the formulas shown in [9], listed below as
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where D-v(·) is parabolic cylinder function, which is define as [4 ]
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let l=v-1, =1,
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and the BER shown in (A3) becomes as
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