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ABSTRACT 

The basic problem of enumerative combinatorics is counting the number of elements for a set. 

This paper focuses on a particular set GN, which is the subset of permutations of N items for interval 

exchange transformations. In mathematics, an interval exchange transformation is a type of 

dynamical system. Unlike a “sieve” method that begins with a larger set and somehow eliminates the 

unqualified elements, a decomposition approach was used in this study. Based on the results of using 

this approach, we propose a concise formula of the cardinality of GN. In addition, we related the set of 

GN,N to the set of BN,N, where GN,N denotes the subset of GN that is composed of all permutations with 

a prefix “N”, and BN,N denotes the set of permutations without a succession. For N ≥ 1, we proved and 

thus propose that BN,N and GN+1,N+1 are isomorphic and that BN,N is postequivalent to GN+1,N+1.  

Key Words: enumerative combinatorics, interval exchange transformation, permutation, derangements, 

isomorphic. 

 

針對區段交換轉換之排列的計數 

 

郭定 

德明財經科技大學行銷管理系 

11451 台北市內湖區環山路一段 56 號 

 

摘  要 

計數組合學的基本問題是研究如何計算一個特定的有限集合之組成個數。本研究選擇 n項

排列的一個特定的部份集合 GN作為研究對象，此部份集合乃是提供運作於 n 個區段上的區段

交換轉換之用。就數學上而言，區段交換轉換是一種動態系統。針對 GN 的計數，本研究採用

拆解法而有別於常見的篩選法。利用此方法我們針對 GN 的個數提出一個很簡潔的計算公式。

除此之外，我們將集合 GN,N 聯結至集合 BN,N。此處，GN,N是集合 GN的一個部份集合，它是以

N 起頭的所有排列；而 BN,N是一個由沒有任何兩個相鄰遞增位置是相鄰遞增數字的所有排列組

成的集合。我們提出並證明當 N ≥ 1時 GN+1,N+1與 BN,N是同構的，而且 BN,N是後-等同於 GN+1,N+1。 

關鍵詞：計數組合學，區段交換轉換，排列，錯位排列，同構。 

http://en.wikipedia.org/wiki/Mathematics
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I. Introduction 

The basic problem of enumerative combinatorics is that of 

counting the number of elements of a set [6]. In this paper, we 

restrict attention to a particular set of permutations that arises 

naturally in the interval exchange transformations. In 

mathematics, an interval exchange transformation, first 

introduced by Katok and Stepin [2] and further studied by 

Keane [3], Veech [8] and many others, is a kind of dynamical 

system. An interval exchange transformation is obtained by 

cutting the unit interval into N subintervals according to a 

vector of N lengths, and then rearranging these subintervals 

according to a permutation of N items.  

For convenience, we use notation SN to denote the set of 

all permutations of N items {1,…, N}. That is, a permutation π 

= (π1π2…πN) belongs to SN if and only if  

 

},,,1{ Ni   for all ,,,1 Ni   

 

and 

 

    ,ji    for all .ji   

 

Clearly, the cardinality of SN is N! (= 1×2…×N, called N 

factorial). However, it is not true that every permutation in SN 

can be used in the interval exchange transformations. Actually, 

only a particular subset of SN is qualified. This particular subset, 

denoted by GN, should satisfy the following definition [7]. 

Definition 1. A permutation π belongs to GN if an only if 

 

,11  ii   for all ,11  Ni                (1) 

 

and 

 

),1(
2

1

1




ii
i

j

j  for all .11  Ni          (2) 

 

By (2), it is clear that 11  and that .NN   

Definition 2. Let gN denote the cardinality of GN. 

It is also clear that g1 = 0. 

Little literature has been published on the topic of the 

cardinality of GN. Only, to the best of my knowledge, Varol [7] 

presents a recursive formula as follows: 
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iN CkiNgNNg   (3) 

 

The goal of this study is try to find a more concise formula than 

Varol’s. 

Varol’s formula is derived by a “sieve” method which 

excluding those permutations that are not belonging to GN from 

SN [6]. Varol divides such permutations into 2N-2 mutually 

disjoint subsets according to how they violate (1) and/or (2). By 

contrast, we adopt a decomposition approach to this problem. 

That is, we analyze the elements of GN directly and decompose 

them into mutually exclusive subsets. By using this approach, 

in Section II, we propose several recursive formulas of the 

cardinality of GN. In Section III, we relate the cardinality of GN 

to a specific permutation problem. Conclusions are summarized 

in Section IV. 

 

II. The cardinality of GN 

In this section we will propose several recursive formulas 

of the cardinality of GN. The recursive formulas are in several 

different forms, depending on how we conduct the computation. 

First, in view of the elements of GN, we give two definitions as 

follows. 

Definition 3. Let Gi,N denote the subset of GN that is composed 

of all permutations with a prefix “i”. 

It is clear that G1,N is an empty set. Since, according to (2), 

permutations with a prefix “1” should not belong to GN. Thus, 

for N = 4, we can decompose G4 into three mutually exclusive 

subsets G2,4, G3,4, and G4,4, such as those listed in Table 1. 

 

Table 1. The Decomposition of G4 

 π1 π2 π3 π4 

G2,4 
2 4 1 3 

2 4 3 1 

G3,4 
3 1 4 2 

3 2 4 1 

G4,4 

4 1 3 2 

4 2 1 3 

4 3 2 1 

 

http://en.wikipedia.org/wiki/Mathematics
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Once we have defined Gi,N, it is naturally to give the 

following definition. 

Definition 4. Let gi,N denote the cardinality of Gi,N. 

Thus, for N = 4, we have g2,4 = 2, g3,4 = 2, and g4,4 = 3, just as 

illustrated in Table 1.  

Definitely, according to Definitions 2~4, we have  

 

.
2

,



N

i

NiN gg                                   (4) 

 

Table 2 presents some values of gN and their corresponding 

values of gi,N’s.  

At first glance, the numbers in Table 2 satisfy identities such as 

 

,,21,2,3 NNN ggg                              (5) 

 

And 

 

.21,3   NNN ggg                             (6) 

 

However, these identities are not good enough for us to 

compute gN. Fortunately, by carefully observing the numbers in 

Table 2, it is not hard to come up with, for N ≥ 2, the following 

recurrence relation. 

Lemma 1. 

 

,)1(1,2

N

NN gg  
                          (7) 

 

Proof. The proof is by induction on n. First, (7) is trivially true 

for 2N . Second, we assume that (7) is true for 1N ; 

namely, we assume that .)1( 1

21,2



  N

NN gg Now, we 

have to prove that .)1(1,2

N

NN gg  
 The idea is to try 

to write Ng ,2 using ,1,2 Ng which, by the induction 

hypothesis, is equal to .)1( 1

2



  N

Ng  By (5) we have 

).)1(( 1

2,31,2,3,2



  N

NNNNN ggggg By (6) 

we have ))1(( 1

221,2



  N

NNNN gggg  

.)1(1

N

Ng  
 ■   

 

Table 2. gN vs. gi,N’s 

gi,N 

N 

g2,N g3,N g4,N g5,N g6,N g7,N gN 

1 0      0 

2 1      1 

3 0 1     1 

4 2 2 3    7 

5 6 8 8 11   33 

6 34 40 42 42 53  211 

7 210 244 250 256 256 309 1525 

 

Beside, from Table 2, we conjectured the truth of the following 

recurrence relation: 

 

.1,1)2(,2,1,   iiiNNiNi gggg                (8) 

 

This recurrence relation is supported by all the available data; 

but right now we have not yet been able to find a general proof. 

Fortunately, the predicted results of the conjecture are 

accordance with the results of Varol’s [7]. 

Thus, by (4) we have 

 

.)()1(
3

1,1)2(,2,11 


 
N

i

iiiNNi

N

NN ggggg   (9) 

 

These recurrence relations enable us to carry out a step-by-step 

computation of gi,N’s and gN. We call the computation a 

left-to-right computation since the order of computation, for N 

= 5, is g2,5, g3,5, g4,5, and g5,5 sequentially.  

Alternatively, we also can conduct a right-to-left 

computation. That is, we first compute g5,5, then compute g4,5, 

g3,5, and g2,5 sequentially.  For N ≥ 3, since g2,2 =1, the 

recurrence relation of (8) can be simplified to 

 

.1,1,1,   NNNNNN ggg                      (10) 

 

Besides, we have the following lemma. 

Lemma 2. 

 

.
1

!
,




N

N
g NN

                                  (11) 

 

Proof. According to the sequence A000255 in Sloane's On-Line 

Encyclopedia of Integer Sequences [4], the notation !N, read “N 
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subfactorial”, denotes the number of derangements of N items 

which follows that  

 

.
!

!
)1(

!1

!

!0

!
!

N

NNN
N N                (12) 

 

Derangements of {1, 2,…, N } are those permutations π = 

(π1π2…πN)  such that π1 ≠ 1, π2 ≠ 2,…, and πN ≠ N. For 

example, when N = 2, 3, 4, 5, 6, and 7, the values of !N are 1, 2, 

9, 44, 265, and 1854, respectively. Hence, the values of !N/(N-1) 

are 1, 1, 3, 11, 53, and 309, respectively. These numbers are 

exactly those gN,N’s in the diagonal of Table 2. ■ 

Besides, by carefully observing the diagonal of Table 2, 

we find another recurrence relation, for N ≥ 3, as the following 

lemma. 

Lemma 3. 

 

.)3()2( 2,21,1,   NNNNNN gNgNg    (13) 

 

Proof. If we can prove that the right-hand side of (13) is equal 

to the right-hand side of (11), then we can prove that (13) is 

valid. Now, applying (11), we can rewrite the right-hand side of 

(13) as follows: 

 

).2(!)1(!  NN                            (14) 

 

Hence, according to (12), we can rewrite (14) as follows: 
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Similarly, according to (12), we can rewrite the right-hand side 

of (11) as follows: 
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Now, the first N-1 terms of both (15) and (16) are equivalent to 

each other. Besides, the last term of (15) is equivalent to the 

sum of the last two terms of (16). So, the right-hand side of (13) 

is equal to the right-hand side of (11). ■ 

Finally, we propose the following theorem. 

Theorem 1. 
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Proof. Once we have proved that (13) is valid, thus according 

to (10) and (13) we obtain the following recurrence relation 

 

).()3( 2,21,1,1   NNNNNN ggNg       (18) 

 

Besides, according to (7) and (8), we have the following 

identity 

 

.,1,2 NNNN gg                                 (19) 

 

On the other hand, according to (8), we have 

 

.1,1)2(,2,,1   iiiNNiNi gggg               (20) 

 

Therefore, according to (13), (18), (19), and (20), by given 

gN-1,N-1 and gN-2,N-2, we can perform right-to-left computation 

for computing gN,N, gN-1,N, gN-2,N and so on sequentially. 

However, neither left-to-right computation nor right-to-left 

computation is efficient. In fact, for computation of gN we do 

not need to compute all gi,N’s. Actually, by repeatedly applying 

(4), (7), and (8), we have another recursive formula, for N ≥ 2, 

as follows: 

 

.)(
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iNiNiN ggig                 (21) 

 

Here, for the purpose of elegant expression, we embed a 

pseudo term g1,1 that is set to one into the formula. Finally, by 

using (7), we can rewrite (21) as following  

 

.)))1(((
1

1

,

1





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N

i

iNiN

i
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Note that, by Definition 1, g1 = 0. So, we can quickly 

compute gN only by the diagonal of Table 2. Furthermore, by 

(11), the diagonal of Table 2 are already available. Here, for 2 

≤ N ≤5, we list computations of gN in Table 3.  
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Table 3. Computations of gN, for 2 ≤ N ≤ 5  

N gN 

2 =1× (g1+1)×1=1 

3 =1× (g1+1)×1+2× (g2-1)×1=1 

4 =1× (g1+1)×1+2× (g2-1)×1+3× (g3+1)×1=7 

5 =1× (g1+1)×3+2× (g2-1)×1+3× (g3+1)×1+4× (g4-1)×1=33 

 

So far, we have derived a bunch of recursive formulas of 

gN. In the foregoing discussion, we know that gN,N’s play an key 

role in the computation of gN. Therefore, in Section III, we will 

further discuss gN,N’s by relating it to a specific permutation 

problem. 

 

III. GN,N vs. BN,N 

As a matter of fact, there is a compelling relationship 

between the set of GN,N and a set of permutations without a 

succession. By given a permutation in SN, a maximal sequence 

of consecutive integers that appear in consecutive positions is 

called a block [4]. For example, in S9, the permutation π = 

(456723189) contains four blocks namely 4567, 23, 1, and 89. 

In the context of block, we define the following two terms. 

Definition 5. Let BM,N denote the subset of SN that is composed 

of all permutations with M blocks. 

Definition 6. Let bM,N denote the cardinality of BM,N. 

For example in S3, it’s easy to see that only one 

permutation, π = (123), contains one block namely 123; and 

that there are two permutations, π = (312) and π = (231), 

contain two blocks namely 3, 12, and 23, 1, respectively; and 

that the other three permutations, π = (132), π = (213), and π = 

(321), all contain three blocks namely 1, 2, and 3. However, the 

following question is not so easy to answer.  

How many permutations in SN contain exactly M blocks? 

Fortunately, the answer has been given by Myers [4] as 

follows: 
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According to Definition 6, bN,N is the cardinality of BN,N that 

contains all permutations with no two consecutive increasing 

integers located in two consecutive positions. That is, 

permutations without a succession. For example, b4,4 = 11, 

Table 4 shows the composition of B4,4. 

 

Table 4. The composition of B4,4 

π1 π2 π3 π4 

1 3 2 4 

1 4 3 2 

2 1 4 3 

2 4 1 3 

2 4 3 1 

3 1 4 2 

3 2 1 4 

3 2 4 1 

4 1 3 2 

4 2 1 3 

4 3 2 1 

 

Here, we introduce three definitions for helping to explain 

a theorem proposed in a few lines later [1]. 

Definition 7. A combinatorial class, or simply a class, is a 

finite or denumerable set on which a size function is defined, 

satisfying the following conditions: 

i. The size of an element is a nonnegative integer; 

ii. The number of elements of any given size is finite. 

Definition 8. The counting sequence of a combinatorial class A 

is the sequence of integers (An)n≥0 where An is the number of 

elements in class A that have size n. 

Definition 9. Two combinatorial classes A and B are 

isomorphic, if and only if their counting sequences are 

identical. 

It is clear that both BN,N and GN+1,N+1 are combinatorial class. 

Next, we propose and prove the following theorem. 

Theorem 2. BN,N and GN+1,N+1 are isomorphic. That is, bN,N = 

gN+1,N+1, for N ≥ 1. 

Proof1. In the foregoing discussion, we know that bN,N is the 

cardinality of BN,N that contains all permutations with no two 

consecutive increasing integers located in two consecutive 

positions. In other words, by definition, BN,N contains all 

permutations that satisfy (1). Let 
'

1NS  denote the subset of 

1NS  that contain permutations in which 11  NN . 

Note that the cardinality of 1NS  is (N+1)!, and the 

cardinality of 
'

1NS  is N!. It is clearly that, in
'

1NS , there are 

bN,N permutations that their N ...21  satisfy (1). Now, 

                                                      
1
 Mathematical proof can be found in appendix. 
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move 1N , that is N+1, to front of these permutations, then 

these bN,N permutations satisfy (1) and (2), and we obtain the 

subset GN+1,N+1. ■ 

Besides, we propose the following two definitions for 

helping to explain another theorem proposed in a few lines 

later.  

Definition 10. Two combinatorial classes A and B are said to 

be equivalent, if and only if they satisfying the following 

conditions: 

i. They are isomorphic; 

ii. For every element a in A there is exactly one 

element b in B such that a is equal to b. 

Definition 11. A combinatorial class A is said to be 

post-equivalent to a combinatorial class B, if and only if they 

satisfying the following conditions: 

i. They are isomorphic; 

ii. For every element a in A there is exactly one 

element b in B such that a is equal to b, except for 

b’s prefix part.  

In this perspective, we propose and prove the following 

theorem. 

Theorem 3. BN,N is post-equivalent to GN+1,N+1, for N ≥ 1.  

Proof. By Theorem 2, we know that BN,N and GN+1,N+1 are 

isomorphic. So, the first condition of Definition 11 is satisfied. 

Now, we shall consider the second condition of Definition 11. 

By Definition 1, we know that equation (1) means permutations 

without a succession. Since BN,N contains all permutations 

without a succession, they all satisfy (1). However, some of 

them violate (2). For example, N=4, there are four such 

permutations out of Table 4, namely π = (1324), π = (1432), π 

= (2143), and π = (3214), that satisfy (1) but violate (2). Clearly, 

if we prefixing every permutations of BN,N by an item N+1, 

then they not only satisfy (1) but also satisfy (2), and we obtain 

GN+1,N+1. For example, if we prefixing an item “5” in front of 

every permutations of B4,4 (as listed in Table 4), then we obtain 

G5,5. ■ 

 

IV. Conclusions 

We propose a decomposition approach to the problem of 

the cardinality of permutations which arises in the interval 

exchange transformations. The beauty of this approach lies not 

in the result itself, but rather in its wide applicability. We 

propose a concise formula of the cardinality of GN that is 

simpler than those proposed by Varol [7]. Besides, we relate the 

set of GN,N to the set of BN,N. We propose and prove that BN,N 

and GN+1,N+1 are isomorphic, and that BN,N is post-equivalent to 

GN+1,N+1, for N ≥ 1. 

 

V. Appendix  

Proof. In the foregoing discussion, we know that the right-hand 

side of (11) can be recast as (16) and that the sum of the last 

two terms of (16) is equivalent to the last term of (15). Thus, if 

we let Y denote the last term of (15), then we can rewrite (16) 

as follows:   
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Furthermore, it can be recast as 
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Here,  
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It is note that 
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So, we have  
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Hence, 

 

.)1()!2( 2 NNX  

 

By recalling the last term of (15), we know that 
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.)1( 1 NY  

 

Thus, 

 

.0)!2(  YNX  

 

Therefore, we obtain  
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That is, 
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On the other hand, by (22), we obtain  
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