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ABSTRACT

The basic problem of enumerative combinatorics is counting the number of elements for a set.
This paper focuses on a particular set Gy, which is the subset of permutations of N items for interval
exchange transformations. In mathematics, an interval exchange transformation is a type of
dynamical system. Unlike a “sieve” method that begins with a larger set and somehow eliminates the
unqualified elements, a decomposition approach was used in this study. Based on the results of using
this approach, we propose a concise formula of the cardinality of Gy. In addition, we related the set of
Gy, to the set of By n, Where Gy y denotes the subset of Gy that is composed of all permutations with
a prefix “N”, and By y denotes the set of permutations without a succession. For N > 1, we proved and
thus propose that By y and Gy.1n+1 are isomorphic and that By y is postequivalent to Gyaq n+1-

Key Words: enumerative combinatorics, interval exchange transformation, permutation, derangements,

isomorphic.
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I.  Introduction

The basic problem of enumerative combinatorics is that of
counting the number of elements of a set [6]. In this paper, we
restrict attention to a particular set of permutations that arises
naturally in the interval exchange transformations. In
mathematics, an interval exchange transformation, first
introduced by Katok and Stepin [2] and further studied by
Keane [3], Veech [8] and many others, is a kind of dynamical
system. An interval exchange transformation is obtained by
cutting the unit interval into N subintervals according to a
vector of N lengths, and then rearranging these subintervals
according to a permutation of N items.

For convenience, we use notation Sy to denote the set of
all permutations of N items {1,..., N}. That is, a permutation =
= (mym,...my) belongs to Sy if and only if

7w, e{l,...,N}, forall i=1,...,N,
and

7 # 7y, forall i # ].

Clearly, the cardinality of Sy is N! (= 1x2---xN, called N
factorial). However, it is not true that every permutation in Sy
can be used in the interval exchange transformations. Actually,
only a particular subset of Sy is qualified. This particular subset,
denoted by Gy, should satisfy the following definition [7].

Definition 1. A permutation &t belongs to Gy if an only if

g #2741 foralll<i <N -1, 1)
and

! 1.. i

Y7 ¢§|(|+1), forall 1<i<N-1. @)
j=1

By (2), itis clear that 77; # land that7z,, # N.

Definition 2. Let gy denote the cardinality of Gy.
It is also clear that g; = 0.
Little literature has been published on the topic of the

cardinality of Gy. Only, to the best of my knowledge, Varol [7]

presents a recursive formula as follows:

N-1 [N-1 _
Oy = (N _1)(N —1)|—Zgl Z(N - _k)!Cil+k71 3
i=2 k=0

The goal of this study is try to find a more concise formula than
Varol’s.

Varol’s formula is derived by a “sieve” method which
excluding those permutations that are not belonging to Gy from
Sy [6]. Varol divides such permutations into 2N-2 mutually
disjoint subsets according to how they violate (1) and/or (2). By
contrast, we adopt a decomposition approach to this problem.
That is, we analyze the elements of Gy directly and decompose
them into mutually exclusive subsets. By using this approach,
in Section Il, we propose several recursive formulas of the
cardinality of Gy. In Section 111, we relate the cardinality of Gy
to a specific permutation problem. Conclusions are summarized
in Section IV.

I1. The cardinality of Gy

In this section we will propose several recursive formulas
of the cardinality of Gy. The recursive formulas are in several
different forms, depending on how we conduct the computation.
First, in view of the elements of Gy, we give two definitions as
follows.
Definition 3. Let G; denote the subset of Gy that is composed
of all permutations with a prefix “i”.
It is clear that Gy is an empty set. Since, according to (2),
permutations with a prefix “1” should not belong to Gy. Thus,
for N = 4, we can decompose G, into three mutually exclusive

subsets G, 4, Gz 4, and Gy 4, such as those listed in Table 1.

Table 1. The Decomposition of G,

m L) 3 Ty

Al (DWW (INDN
W N[ NP> D>
N [P [W || |W|F
W ([N =N (P Ww
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Once we have defined Gy, it is naturally to give the
following definition.
Definition 4. Let g; y denote the cardinality of G; .
Thus, for N = 4, we have g,4 = 2, 034 = 2, and g4 4 = 3, just as
illustrated in Table 1.

Definitely, according to Definitions 2~4, we have

N
¢)N :zgi,N' 4)
i=2

Table 2 presents some values of gy and their corresponding
values of gj’s.

At first glance, the numbers in Table 2 satisfy identities such as

Osn = 9ona T 90N 5)
And
Osn = Onat + Onae (6)

However, these identities are not good enough for us to
compute gy. Fortunately, by carefully observing the numbers in
Table 2, it is not hard to come up with, for N > 2, the following
recurrence relation.

Lemma 1.

SPN ZgN-1+(_1)Na Q)

Proof. The proof is by induction on n. First, (7) is trivially true

for N=2. Second, we assume that (7) is true for N —1;

namely, we assume that g, y ; = gy _, + (1) . Now, we
have to prove that g, \ =0y, +(~1)". The idea is to try
to write ,\ using J,_;, which, by the induction
hypothesis, is equal to g, _, +(~1)"". By (5) we have
Oon =9sn —Tona =Gsn — (O +(-D"™).By (6)

we have Oon =Onaa T On2 — (ngz + (_1)N71)

= ngl"'(_l)N- |

Table 2. gy vs. gin’s

iN (SPAN] Osn Jan OsN JeN g7n On
N
1 0 0
2 1 1
3 0 1 1
4 2 2 7
5 6 8 8 11 33
6 34 40 42 42 53 211
7 210 244 250 256 256 309 1525

Beside, from Table 2, we conjectured the truth of the following

recurrence relation:

Oin =9ian T 92N 2) X Qi )]

This recurrence relation is supported by all the available data;
but right now we have not yet been able to find a general proof.
Fortunately, the predicted results of the conjecture are
accordance with the results of Varol’s [7].

Thus, by (4) we have
L
Oy =0y, +(-1)" + Z(gi—l,N +Oon 2 X Yinia)- ©)
i3

These recurrence relations enable us to carry out a step-by-step
computation of gin’s and gy. We call the computation a
left-to-right computation since the order of computation, for N
=5,iS 925, U35, Ja5 and gs s sequentially.

Alternatively, we also can conduct a right-to-left
computation. That is, we first compute gss, then compute gys,
Oss and g5 sequentially. For N > 3, since g, =1, the

recurrence relation of (8) can be simplified to

O = 9naan T Onoanas (10)

Besides, we have the following lemma.

Lemma 2.

(11)

Proof. According to the sequence A000255 in Sloane's On-Line
Encyclopedia of Integer Sequences [4], the notation !N, read “N
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subfactorial”, denotes the number of derangements of N items

which follows that

I
+(-D)" —. (12)

Derangements of {1, 2,..., N } are those permutations m =
(mymy...my)  such that my # 1, @, # 2,..., and ny # N. For
example, when N =2, 3, 4, 5, 6, and 7, the values of IN are 1, 2,
9, 44, 265, and 1854, respectively. Hence, the values of IN/(N-1)
are 1, 1, 3, 11, 53, and 309, respectively. These numbers are
exactly those gy n’s in the diagonal of Table 2. Il

Besides, by carefully observing the diagonal of Table 2,
we find another recurrence relation, for N > 3, as the following
lemma.

Lemma 3.
Onn :(N_Z)XgN—l,N—l+(N_3)XgN72,N—2' (13)

Proof. If we can prove that the right-hand side of (13) is equal
to the right-hand side of (11), then we can prove that (13) is
valid. Now, applying (11), we can rewrite the right-hand side of
(13) as follows:

I(N-1D+!(N -2). (14)
Hence, according to (12), we can rewrite (14) as follows:

N(N-2)! N(N-2)

o 1

N-2 N(N _Z)I _I_(_l)N—l (N _1)'

) (N-2) (N-1)

(15)

Similarly, according to (12), we can rewrite the right-hand side

of (11) as follows:

SN2 -2
TEARAT

+e4(-1)

Now, the first N-1 terms of both (15) and (16) are equivalent to
each other. Besides, the last term of (15) is equivalent to the
sum of the last two terms of (16). So, the right-hand side of (13)
is equal to the right-hand side of (11). |l

Finally, we propose the following theorem.

Theorem 1.
N1 -

On :Z(Ix(gi + (=D))< gy ini)- a7
i=1

Proof. Once we have proved that (13) is valid, thus according

to (10) and (13) we obtain the following recurrence relation
Onan = (N _S)X(gN—l,N—l+gN—2,N—2)' (18)

Besides, according to (7) and (8), we have the following
identity

On-2n = Onaane (19)

On the other hand, according to (8), we have
Qiaan =9in —92n—(i-2) X Gigjia (20)

Therefore, according to (13), (18), (19), and (20), by given
On-1n-1 and gnan-2, We can perform right-to-left computation
for computing gnn, On-1,8: In-2,n @nd SO on sequentially.

However, neither left-to-right computation nor right-to-left
computation is efficient. In fact, for computation of gy we do
not need to compute all gjy’s. Actually, by repeatedly applying
(4), (7), and (8), we have another recursive formula, for N > 2,
as follows:

N-1
O =Z(ixgz,i+lng—i,N—i)' (21)
i-1

Here, for the purpose of elegant expression, we embed a
pseudo term g ; that is set to one into the formula. Finally, by

using (7), we can rewrite (21) as following
N1 -

Oy = Z(' x(g; +(=1)") x Onoin-i) M
i=1

Note that, by Definition 1, g; = 0. So, we can quickly
compute gy only by the diagonal of Table 2. Furthermore, by
(11), the diagonal of Table 2 are already available. Here, for 2

< N <5, we list computations of gy in Table 3.
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Table 3. Computations of gy, for2<N <5

Table 4. The composition of B, 4

In

=1x (g1+1)x1:1

=1x (ga+1)x1+2x (go-1)x1=1

=1x (g1+1)x1+2x (go-1)x1+3x (ga+1)x1=7

=1x (g1+1)x3+2x (go-1)x1+3x (gs+1)x1+4x (gs-1)x1=33

o s |w |z

So far, we have derived a bunch of recursive formulas of
g In the foregoing discussion, we know that gy y’s play an key
role in the computation of gy. Therefore, in Section 111, we will
further discuss gyn’s by relating it to a specific permutation
problem.

1. Gy VS. Ban

As a matter of fact, there is a compelling relationship
between the set of Gyy and a set of permutations without a
succession. By given a permutation in Sy, a maximal sequence
of consecutive integers that appear in consecutive positions is
called a block [4]. For example, in S,, the permutation & =
(456723189) contains four blocks namely 4567, 23, 1, and 89.
In the context of block, we define the following two terms.
Definition 5. Let By y denote the subset of Sy that is composed
of all permutations with M blocks.

Definition 6. Let by y denote the cardinality of By .

For example in S;, it’s easy to see that only one
permutation, & = (123), contains one block namely 123; and
that there are two permutations, = = (312) and = = (231),
contain two blocks namely 3, 12, and 23, 1, respectively; and
that the other three permutations, & = (132), = = (213), and &t =
(321), all contain three blocks namely 1, 2, and 3. However, the
following question is not so easy to answer.

How many permutations in Sy contain exactly M blocks?

Fortunately, the answer has been given by Myers [4] as

follows:

N1 k+1
by y =Co (M- (D" —— (2
M N M1 ( )kZ:(;( ) (M —k—1)! (22)

According to Definition 6, by y is the cardinality of By that
contains all permutations with no two consecutive increasing
integers located in two consecutive positions. That is,
permutations without a succession. For example, by, = 11,
Table 4 shows the composition of By 4.

m 73 T3 Ty
1 3 2 4
1 4 3 2
2 1 4 3
2 4 1 3
2 4 3 1
3 1 4 2
3 2 1 4
3 2 4 1
4 1 3 2
4 2 1 3
4 3 2 1

Here, we introduce three definitions for helping to explain
a theorem proposed in a few lines later [1].

Definition 7. A combinatorial class, or simply a class, is a
finite or denumerable set on which a size function is defined,
satisfying the following conditions:

i The size of an element is a nonnegative integer;

ii. The number of elements of any given size is finite.
Definition 8. The counting sequence of a combinatorial class A
is the sequence of integers (An)nso Where A, is the number of
elements in class A that have size n.

Definition 9. Two combinatorial classes A and B are
isomorphic, if and only if their counting sequences are
identical.

It is clear that both Byyand Gy.ins1 are combinatorial class.
Next, we propose and prove the following theorem.

Theorem 2. Byy and Gy.qn+1 are isomorphic. That is, byy =
On+ine1, TOr N> 1.

Proof!. In the foregoing discussion, we know that by is the
cardinality of By that contains all permutations with no two
consecutive increasing integers located in two consecutive

positions. In other words, by definition, Byy contains all

permutations that satisfy (1). Let S;\l +1 denote the subset of
Sy, that contain permutations in which 7z, = N +1.
Note that the cardinality of Sy,; is (N+1)!, and the
cardinality of S;Wl is NI It is clearly that, in S‘Nﬂ, there are

byn permutations that their 77,77,...7T\ satisfy (1). Now,

! Mathematical proof can be found in appendix.




86

Journal of Science and Engineering Technology, Vol. 10, No. 2, 2014

move 7T, .4, that is N+1, to front of these permutations, then

these byn permutations satisfy (1) and (2), and we obtain the
subset Gysqne:. M
Besides, we propose the following two definitions for
helping to explain another theorem proposed in a few lines
later.
Definition 10. Two combinatorial classes A and B are said to
be equivalent, if and only if they satisfying the following
conditions:
i They are isomorphic;
ii. For every element a in A there is exactly one
element b in B such that a is equal to b.
Definition 11. A combinatorial class A is said to be
post-equivalent to a combinatorial class B, if and only if they
satisfying the following conditions:
i They are isomorphic;
ii. For every element a in A there is exactly one
element b in B such that a is equal to b, except for
b’s prefix part.
In this perspective, we propose and prove the following
theorem.
Theorem 3. By is post-equivalent to Gy.q n+1, for N> 1.
Proof. By Theorem 2, we know that Byy and Gy.yne are
isomorphic. So, the first condition of Definition 11 is satisfied.
Now, we shall consider the second condition of Definition 11.
By Definition 1, we know that equation (1) means permutations
without a succession. Since Byy contains all permutations
without a succession, they all satisfy (1). However, some of
them violate (2). For example, N=4, there are four such
permutations out of Table 4, namely & = (1324), n = (1432), =
=(2143), and & = (3214), that satisfy (1) but violate (2). Clearly,
if we prefixing every permutations of Byy by an item N+1,
then they not only satisfy (1) but also satisfy (2), and we obtain
Gn+1n+1- FOr example, if we prefixing an item “5” in front of
every permutations of B, 4 (as listed in Table 4), then we obtain
Gss M

1V. Conclusions
We propose a decomposition approach to the problem of
the cardinality of permutations which arises in the interval
exchange transformations. The beauty of this approach lies not
in the result itself, but rather in its wide applicability. We

propose a concise formula of the cardinality of Gy that is
simpler than those proposed by Varol [7]. Besides, we relate the
set of Gy to the set of Byy. We propose and prove that By y
and Gy.n+1 are isomorphic, and that By is post-equivalent to
Gnspn+1, FOr N> 1.

V. Appendix
Proof. In the foregoing discussion, we know that the right-hand
side of (11) can be recast as (16) and that the sum of the last
two terms of (16) is equivalent to the last term of (15). Thus, if
we let Y denote the last term of (15), then we can rewrite (16)

as follows:

Furthermore, it can be recast as

G- {(N—l) G

ooy (N-2)!

P
|

~

—_—

Here,

( )N2

12,3,
o 2l

N -1
(N-2)!]

It is note that

ey

z( i1+t |+1

So, we have
B (_1)N—2
(N-2)!
Hence,

X (N = 2)1= (=12

By recalling the last term of (15), we know that
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Y = (-
Thus,
X (N =2)H4Y =0.

Therefore, we obtain

N-1 N-2 N-3 1
=(N=- —— 4 —" et ()" .
O =(N-2) o 1 2 ) (N-2)!
That is,
N — k 1
N =(N—2)'Z( ) —
k=0

On the other hand, by (22), we obtain

S Nk K+1
v =(N —1)!;(—1) N kD)1
=(N-1) lé -
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