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ABSTRACT 
     In this study, the equations of motion for a polar orthotropic annular sandwich plate are derived 

by using the discrete layer finite element method.  The extensional and shear modulus of the 

electrorheological (ER) fluid layer are described by complex quantities; moreover, the tunable 

damping of the sandwich system is more effective when the electric fields are applied.  The ER fluid 

core is found to have a significant effect on the vibrational behaviors of the plate.  Finally, the effects 

of ER layer thickness, base annular plate stiffness, and certain designed parameters on natural 

frequencies and modal loss factors are also discussed. 

Key Words: tunable damping, electrorheological (ER) layer, discrete layer finite element, polar 

orthotropic plate 
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摘 要 

  本文主要在於推導並建立三明治極正交環板系統的運動方程式與分析模型的建立。採用分

析力學（analytical mechanics）的方式來推導系統的運動方程式並利用離散層有限元素法

（discrete layer finite element method）來分析系統的振動特性與阻尼變化。在本文中討論了含電

變流體之三明治極正交環板系統的阻尼特性與自由振動，其中所使用的電變流體材料特性則利

用複數的形式來加以描述。文中討論電變流體的厚度與施加的電場強度對於三明治極正交環板

系統的特性影響，而系統的模態損失因子會隨著施加電場強度的改變而產生變化。因此，在此

三明治極正交環板系統系統上貼覆此類主動式智能材料阻尼層除了可使系統更加的穩定外，也

可達到主動控制的效果。 

關鍵詞：可調式阻尼效應，電變流體，離散層有限元素，極正交 

 

I. INTRODUCTION 
     The circular and annular plate had received the great deal 
of attention for the widely uses in many mechanical 
applications and the study on the circular and annular plate had 
been discussed by many researchers.  Pandalai and Patel [6] 
studied the natural frequency of polar orthotropic circular plate 
for specific conditions.  Then, Vijayakumar and Ramaiah [8] 
investigated the natural frequencies of the polar orthotropic 
circular and annular plates by using the Rayleigh-Ritz method.  
Lin and Tseng [4] studied the free vibration problems of polar 
orthotropic circular and annular plates.  Recently, many 
investigations of the vibration and damping analysis for the 
mechanical structures can be found.  Mirza and Singh [5] 
investigated the axisymmetric vibration of the sandwich 
circular plate.  Roy and Ganesan [7] presented the finite 
element method to investigate the vibration and damping 
analysis of circular plate with constrained layer treatment.  Yu 
and Huang [11] studied the problem of the three-layered 
circular and annular plate based on the thin shell theory to 
discuss the characteristics of the viscoelastic layer. 
     Recently, many studies on the active control of the 
structural vibration had been devoted to the use of the 
electrorheological (ER) material.  The material properties of 
the ER material can vary with respect to applied electric field 
and the damping of the ER fluid had been paid much attention 
by many researchers since the Brooks et al. [1] studied the 
viscoelastic properties of the ER fluid.  Choi and Park [2] 
carried out the investigation on the active vibration control and 
damping analysis of the cantilever sandwich beam with ER 
fluid.  Then, Yalcintas and Coulter [9] adopted the ER 
material as controllable damping layer for the beam and plate 
configuration incorporating embedded sensors and control 
mechanism.  The dynamic characteristics and damping effects 
of the sandwich isotropic and orthotropic rectangular plate 
structures were presented by Yeh and Chen [10]. 

     In this paper, the vibration and damping behaviors of the 
sandwich polar orthotropic annular plate with ER core layer are 
studied.  There are no works have been done to investigate 
this sandwich system with ER damping treatment to author’s 
knowledge.  The vibration and damping characteristics of the 
polar orthotropic annular plate with ER core layer are 
calculated by using the discrete layer finite element method.  
The extensional and shear modulus of the ER material are 
described by complex quantities and the natural frequencies 
and the modal loss factors of the sandwich system are obtained 
by solving the complex eigenvalue problem.  Additionally, the 
effects of the ER layer and the influences of various 
parameters, such as thickness and applied electric fields are 
also discussed in this study. 
 

II. PROBLEM FORMULATION OF THE  
SYSTEM 

     In Figure 1, the sandwich polar orthotropic annular plate 
with ER core layer is considered.  Layer 1 is the constraining 
layer and assumed to be pure elastic and polar orthotropic.  
The ER core layer is designated as layer 2 and the material 
properties can be changed by applying various electric fields.  
Layer 3 is the base annular plate and assumed to be undamped, 
pure elastic, and polar orthotropic.  The base annular plate is 
designed as the inner radius ri=a and outer radius r0=b.  
Besides, the thickness for each layer is h1, h2, and h3, 
respectively.  In addition, the following assumptions must be 
mentioned first.  The transverse displacements of each layer 
are equal and there are no slipping between the 
constraining-ER layer and ER-plate layer.   
     In order to analyze the problem, the displacement field of 
the layer i is employed as follows:  
 
 
 



JIA-YI YEH, JIUN-YEU CHEN, MING-YING HSU and KUAN-CHUAN FANG:  

A Tunable Damping and Natural-Frequency-Characteristic Analysis of an Orthotropic Annular Plate 

                                                        

43 

 

z

r 
a b 

h1 

h2 

h3 

constraining layer
ER layer 

annular plate

polar orthotropic layer 

 
 

Fig. 1. Polar orthotropic sandwich annular plate system 
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     By using the interpolation in r-direction and the 
circumferential wave number m, the displacements of the 
interfaces for two-layer can be shown in terms of the nodal 
degrees of freedom as follows: 
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where the vector of the nodal displacements of the ith layer 
element, as shown in Figure 2,  
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and )(2 rH  is the interpolation matrix and in which 
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     Then, the strain-displacement relation for the ith layer of 
the system can be expressed as the following form: 
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Fig. 2. Three-layer discrete layer annular finite element 
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     Then, the stress-strain relation can be obtained and 
shown as follows: 
 

i

i,

i,i,

i,i,

i,r

i,

i,r

i
C

CC
CC

ε
τ
σ
σ

σ

θ

θ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=

44

2221

1211

00
0
0

, (4) 

 
In which, for isotropic ER material,  
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respectively.  For polar orthotropic material,  
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respectively.  In the above equations, Ei is the Young’s 
modulus, υi is the Poisson ration, and κ is the shear correction 
factor. 
     According to the above equation, the kinetic and strain 
energies of the element for ith layer can be expressed as the 
following form: 
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where ρi is the mass density of the ith layer. 
     The kinetic and strain energies of the element can be 
rewritten as follows by substituting the equation (1), (2), (3), 
and (4):  
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     Then, the following relations must be obtained by 
combining the elemental matrices into the global stiffness and 
mass matrices: 
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where U and e

iTr  are the global nodal co-ordinate vector and 

transformation matrix, respectively. 
     The equation of motion for the polar orthotropic annular 
sandwich system can be express as the following form by 
assembling the contributions of all elements:  
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where Ni is the element number of the ith layer. 
     Finally, the complex eigenvalues λ

~  of the above 

complex eigenvalue problems can be calculated numerically.  
The natural frequencies ω and modal loss factor ηv of the 
sandwich polar orthotropic annular plate with ER core layer 
can be obtained as follows: 
 

)(λω
~Re= , 
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)(

λ
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v = . (10) 

 
III. RESULTS AND DISCUSSIONS 

     In this paper, the discrete layer finite element method is 
adopted to calculate the vibration problem of the sandwich 
system with ER core treatment.  The damping effects of the 
sandwich system are provided by the ER fluid in this study, and 
only the electric field dependence of ER fluid needed to 
consider based on the existing model of ER material.  The 
calculations of the natural frequencies and modal loss factors 
for the sandwich annular plate are also presented in Table 1, 
and the boundary conditions are clamped at inner edge and free 
at outer edge and the number of elements in the r-direction is 
taken to be 16.  Good accuracy and convergence can be found 
in the above comparisons.  The complex modulus of ER fluid 
can be simplified into the following form, which was 
experimentally calculated by Don [3]: 
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Table 1. Comparisons between published and proposed 
methods for the full coverage annular plate 

Natural frequency (Hz)  Modal loss factor  Mode 
(n, m) Present Ref. [7]  Present Ref. [7] 
(0,0) 74.44 74.38  0.11280 0.11270 
(0,1) 73.00 73.08  0.09542 0.09576 
(0,2) 96.20 96.38  0.10160 0.10210 
(0,3) 144.00 142.80  0.12100 0.12120 
(0,4) 205.20 203.70  0.11700 0.11770 

 
GjGEG * ′′+′=)(2 , (11) 

 
in which, 1−=j , 215000 *EG ≈′ , 6900≈′′G  and E* is the 

applied electric field in kV/mm . 
     Additionally, in order to simplify the following analysis 
and discussion, the geometric and non-dimensional parameters 
are used: 

b
aa~ = , 322 hhh

~
= , 311 hhh

~
= , 

1,

1,
1

rE
E

E~ θ= , 
3,

3,
3

rE
E

E~ θ= ,  

υθ r,i= 0.29, υ2 = 0.49, ρ1 = ρ3 = 2700 kg/m3,  

ρ2 = 1700 kg/m3, b=0.15 m, Er,1= Er,3=70 GPa,  

κ = π2/12 (for layer 1, 3), κ = 1 1=κ  (for layer 2). 

     The effects of applied electric fields on the natural 
frequency and modal loss factor of the polar orthotropic 
sandwich annular plate for mode (0, 0), (0, 1) and (0, 2) are 
shown in Figure 3.  Additionally, the parameters of the system 
are 11 =E~ , 513 .E~ = , 10.a~ = , b=0.15 m, h3=0.5 mm, 

1013 .h
~

= , 5023 .h
~

= , respectively.  As shown in the figure, it 

can be observed that the natural frequency increases as the 
applied electric field magnitude increases.  Besides, it also can 
be found that the modal loss factor of the system decreases as 
the applied electric field increases.  The tendency for each 
mode is the same from above numerical results. 
     Figure 4 presents the effects of 3E~  on the natural 

frequency and modal loss factor of the sandwich system with 
various thickness of ER layer for mode (0, 0).  The parameters 
of the system are 11 =E~ , 10.a~ = , E* = 0.5 kV/mm,        

b = 0.15 m, h3=0.5 mm, 1013 .h
~

= , respectively.  According 

to the above results, it can be seen that the natural frequency 
becomes larger when 3E~  increases.  In addition, the modal 

loss factor will decrease as 3E~  increases.  On the other hand, 

the natural frequency decreases and modal loss factor increase 
when the thickness of ER layer increases. 
     In Figure 5, the numerical results of the effects of 3E~  

on the natural frequency and modal loss factor of the sandwich 
system with various electric fields for mode (0, 0) can be  
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Fig. 3. Effects of electric fields on the natural frequencies 
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obtained.  The parameters of the system are 11 =E~ , 10.a~ = ,  

b = 0.15 m, h3 = 0.5 mm, 1013 .h
~

= , 5023 .h
~

= .  From the 

figure, it can be observed that the natural frequency increase as 
the applied electric fields increases.  On the contrary, the 
modal loss factor decreases while the applied electric field 
increases.  Therefore, the damping characteristics of the 
sandwich system can be controlled by the applied electric 
fields. 
     The effects of thickness of ER layer on the natural 
frequency and modal loss factor with various ratios 3E~  are 

presented in Figure 6.  The parameters of the system 
are 11 =E~ , 10.a~ = , E* = 0.5 kV/mm, b = 0.15 m, h3 = 0.5 mm, 

1013 .h
~

= , respectively.  According to the numerical results, it 

can be observed that the larger thickness of the ER layer, the 
smaller natural frequency.  Contrary to the natural frequency, 
the larger thickness of ER layer, the larger modal loss factor.  
Besides, the natural frequency will increase and modal loss 
factor will decrease while 3E~  increases from the figure. 

 
IV. CONCLUSIONS 

     The damping characteristics problems of the polar 
orthotropic sandwich annular plate with ER core layer are 
investigated in this study.  The discrete layer finite element 
method is adopted to calculate the sandwich orthotropic 
annular system.  Besides, the complex description of 
viscoelastic material is used for the ER fluid.  From the 
numerical results, the following conclusions can be presented.  
It can be observed that the ER damping treatment can make the 
system stable from the numerical results.  And, the results 
show that the natural frequency and modal loss factor will vary 
with changing the strength ratio 3E~ . 

     The applied electric field can change the vibration and  
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Fig. 6. Effects of thickness of ER layer on the natural 

frequencies and the modal loss factors of the 
sandwich annular plate with various ratios 3E~  

damping characteristics of the polar orthotropic sandwich 
system.  The thickness of the ER layer also can change the 
stiffness of the sandwich system, and the natural frequency and 
modal loss factor of the system will be change.  Besides, the 
damping effects of the ER layer can be changed by applying 
different electric fields and shown to have significant variations 
on the vibration and damping characteristics.   
     According to the present numerical results, the present 
designs can be used in practical mechanical applications to 
achieve active controllable system.  Besides, it can be used to 
design the smart devices and other mechanical applications as 
basic information for the future practical applications.   
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